Compiler Design and Construction
(CSC 352)
By
Bhupendra Singh Saud

for
B. Sc. Computer Science & Information Technology

Course Title: Complier Design and Construction

Course no: CSC-352 Full Marks: 60+40
Credit hours: 3

Course Contents:

Unit 1:
1.1 Introduction to compiling: Compilers, Analysis of source program, the phases of
compiler, compiler-construction tools. 4 hrs
1.2 A Simple One-Pass Compiler: Syntax Definition, Syntax directed translation,
Parsing, Translator for simple expression, Symbol Table, Abstract Stack Machines.
5 hrs
Unit 2:
2.1 Lexical Analysis: The role of the lexical analyzer, Input buffering, Specification of
tokens, Recognition of tokens, Finite Automata, Conversion Regular Expression to an
NFA and then to DFA, NFA to DFA, State minimization in DFA, Flex/lex introduction.
8 Hrs
2.2 Syntax Analysis: The role of parser, Context frees grammars, Writing a grammars,
Top-down parsing, Bottom-up parsing, error recovery mechanism, LL grammar,
Bottom up parsing-Handles, shift reduced parsing, LR parsers-SLR,LALR,LR,LR/LALR

Grammars, parser generators. 10 Hrs

Unit 3:

3.1 Syntax Directed Translation: Syntax-directed definition, Syntax tree and its
construction, Evaluation of S-attributed definitions, L-attributed, Top-down translation,
Recursive evaluators. 5 Hrs
3.2 Type Checking: Type systems, Specification of a simple type checker, Type

conversions equivalence of type expression, Type checking Yacc/Bison. 3 Hrs

By Bhupendra Singh Saud Page 1

Downloaded from CSIT Tutor

Unit 4:
41 Intermediate Code Generation: Intermediate languages, three address code,
Declarations, Assignments Statements, Boolean Expressions, addressing array elements,

case statements, Back patching, procedure calls. 4 Hrs

4.2 Code Generation and optimization: Issues in design of a code generator, the target
machine, Run -time storage management, Basic blocks and flow graphs, next use
information’s, a simple code generator, Peephole organization, generating code from
dags. 6 Hrs

Subject: Compiler Design and Construction FM: 60
Time: 3 hours PM: 24
Candidates are required to give their answer in their own words as for as practicable.
Attempt all the questions.
Every question contains equal marks.

1. What do mean by compiler? How source program analyzed? Explain in brief.
2. Discuss the role of symbol table in compiler design.
3. Convert the regular expression ‘0+ (1+0)*00" first into NFA and then into DFA
using Thomson’s and Subset Construction methods.
4. Consider the grammar:
a. S>(L)| a
b. L>L,S|S
5. Consider the grammar
a. C—AB
b. A —a
c. B—a
Calculate the canonical LR (0) items.
6. Describe the inherited and synthesized attributes of grammar using an example.
7. Write the type expressions for the following types.
* An array of pointers to real, where the array index range from 1 to 100.
* Function whose domains are function from characters and whose range is
a Pointer of integer.
8. What do you mean by intermediate code? Explain the role of intermediate code

in compiler design.

By Bhupendra Singh Saud Page 2

Downloaded from CSIT Tutor

9. What is operation of simple code generator? Explain.
10. Why optimization is often required in the code generated by simple code

generator? Explain the unreachable code optimization.

Prerequisites
Introduction to Automata and Formal Languages
Introduction to Analysis of Algorithms and Data Structures
Working knowledge of C/C++

Introduction to the Principles of Programming Languages, Operating System &
Computer Architecture is plus

* ok ¥ *

Resources

Text Book: Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley, 1986

Compilers

Principles, Techniques,
? and Tools

Alfred V. Aho
Ravi Sethi ©
Jeffrey D. Ullman

What is Compiler?

A compiler is a translator software program that takes its input in the form of program
written in one particular programming language (source language) and produce the
output in the form of program in another language (object or target language).

By Bhupendra Singh Saud Page 3

Downloaded from CSIT Tutor

source program —* COMPILER [target program

(Normally a program written in
a high-level programming language) l

(Normally the equivalent program in
machine code — relocatable object file)

CITOT IMessages

A compiler is a special type of computer program that translates a human readable text
file into a form that the computer can more easily understand. At its most basic level, a
computer can only understand two things, a 0 and a 1. At this level, a human will
operate very slowly and find the information contained in the long string of 1s and 0Os
incomprehensible. A compiler is a computer program that bridges this gap.

Phases of a Compiler
In during compilation process program passes through various steps or phases. It also
involves the symbol table and error handler. There are two major parts of a compiler
Analysis and Synthesis.

Analysis part
In analysis part, an intermediate representation is created from the given source
program. This part is also called front end of the compiler. This part consists of mainly
following four phases:
e Lexical Analysis
Syntax Analysis
Semantic Analysis and
Intermediate code generation

Synthesis part
In synthesis part, the equivalent target program is created from intermediate
representation of the program created by analysis part. This part is also called back end
of the compiler. This part consists of mainly following two phases:

e Code Optimization and

e Final Code Generation

By Bhupendra Singh Saud Page 4

Downloaded from CSIT Tutor

Input source program

Lexical analyzer

Syntax a t'1alyzer
v
Symbol table L Semanti analyzer \ Error
Manager Handler
\Intermediate code

Generator

v
Code optimizer

Code ge;;lerator

Our taré’et program

Figure: Phases of a compiler

1. Lexical Analysis (or Scanning)

Lexical analysis or scanning is the process where the source program is read from left-
to-right and grouped into tokens. Tokens are sequences of characters with a collective
meaning. In any programming language tokens may be constants, operators, reserved
words, punctuations etc.

The Lexical Analyzer takes a source program as input, and produces a stream of tokens
as output. Normally a lexical analyzer doesn’t return a list of tokens; it returns a token
only when the parser asks a token from it. Lexical analyzer may also perform other
auxiliary operation like removing redundant white space, removing token separator
(like semicolon) etc. In this phase only few limited errors can be detected such as illegal

By Bhupendra Singh Saud Page 5

Downloaded from CSIT Tutor

characters within a string, unrecognized symbols etc. Other remaining errors can be
detected in the next phase called syntax analyzer.

Source
Program

Lexical
Analyzer

Token
_

Parser

-—
Ger next

Example:

PN

CITor

While(i>0)
i=i-2;

Tokens
while

.<
i
>
0
)

i

2

7

token n ,l(
Y Fi
LY F
LY F

Symbol Table

description
while keyword
left parenthesis
identifier

greater than symbol
integers constant
right parenthesis
identifier

Equals

identifier

Minus

integers constant
Semicolon

The main purposes of lexical analyzer are:

* It is used to analyze the source code.

* Lexical analyzer is able to remove the comments and the white space present in the

expression.

* It is used to format the expression for easy access i.e. creates tokens.
* It begins to fill information in SYMBOL TABLE.

By Bhupendra Singh Saud

Downloaded from CSIT Tutor

Page 6

2. Syntax Analyzer (or Parsing)
The second phase of the compiler phases is syntax Analyzer, once lexical analysis is
completed the generation of lexemes and mapped to the token, then parser takes over to
check whether the sequence of tokens is grammatically correct or not, according to the
rules that define the syntax of the source language.
The main purposes of Syntax analyzer are:

» Syntax analyzer is capable analyzes the tokenized code for structure.

o This is able to tags groups with type information.
A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the given
source program. Syntax analyzer is also called the parser. Its job is to analyze the source
program based on the definition of its syntax. It is responsible for creating a parse-tree
of the source code.

Ex: newval := oldval + 12

assign-stmt

e
= .,
= e

o T~ . » In a parse tree, all terminals are at leaves.
identifier = CXpression + All inner nodes are non-terminals in
A--H__H_ a context free grammar.
newval expression + expression
identifier number
oldval 12

The syntax of a language is specified by a context free grammar (CFG).

The rules in a CFG are mostly recursive.

A syntax analyzer checks whether a given program satisfies the rules implied by a CFG
or not.

- If it satisfies, the syntax analyzer creates a parse tree for the given program.

3. Semantic Analyzer
The next phase of the semantic analyzer is the semantic analyzer and it performs a very

important role to check the semantics rules of the expression according to the source

language. The previous phase output i.e. syntactically correct expression is the input of

By Bhupendra Singh Saud Page 7

Downloaded from CSIT Tutor

the semantic analyzer. Semantic analyzer is required when the compiler may require
performing some additional checks such as determining the type of expressions and
checking that all statements are correct with respect to the typing rules, that variables
have been properly declared before they are used, that functions are called with the
proper number of parameters etc. This semantic analyzer phase is carried out using
information from the parse tree and the symbol table.

The parsing phase only verifies that the program consists of tokens arranged in a
syntactically valid combination. Now semantic analyzer checks whether they form a
sensible set of instructions in the programming language or not. Some examples of the
things checked in this phase are listed below:

* The type of the right side expression of an assignment statement should match the
type of the left side ie. in the expression newwval = oldval + 12, The type of the
expression (oldval+12) must match with type of the variable newwval.

* The parameter of a function should match the arguments of a function call in both
number and type.

* The variable name used in the program must be unique etc.

The main purposes of Semantic analyzer are:
o Itis used to analyze the parsed code for meaning.
e Semantic analyzer fills in assumed or missing information.
« It tags groups with meaning information.

Important techniques that are used for Semantic analyzer:
o The specific technique used for semantic analyzer is Attribute Grammars.
e Another technique used by the semantic analyzer is Ad hoc analyzer.

4. Intermediate code generator
If the program syntactically and semantically correct then intermediate code generator
generates a simple machine independent intermediate language. The intermediate
language should have two important properties:

* It should be simple and easy to produce.

* It should be easy to translate to the target program
Some compiler may produce an explicit intermediate codes representing the source
program. These intermediate codes are generally machine (architecture) independent.
But the level of intermediate codes is close to the level of machine codes.

Example: A=b+c*d/f
Solution

By Bhupendra Singh Saud Page 8

Downloaded from CSIT Tutor

Intermediate code for above example

Tl=c*d

T2=T1/f
T3=b+ T2
A=T3

The main purposes of Intermediate code generation are:
« This phase is used to generate the intermediate code of the source code.

Important techniques that are used for Intermediate code generations:
o Intermediate code generation is done by the use of Three address code
generation.

Code Optimization
Optimization is the process of transforming a piece of code to make more efficient
(either in terms of time or space) without changing its output or side effects. The
process of removing unnecessary part of a code is known as code optimization. Due to
code optimization process it decreases the time and space complexity of the program.
ie

Detection of redundant function calls

Detection of loop invariants

Common sub-expression elimination

Dead code detection and elimination

b =0
tl (= a + b
t2 (= ¢ * tl
a = t2

a := c*a
b :=0
The main purposes of Code optimization are:
o It examines the object code to determine whether there are more efficient means
of execution.
Important techniques that are used for lexical analyzer:
o Loop unrolling.
o Common-sub expression elimination
o Operator reduction etc.

By Bhupendra Singh Saud Page 9

Downloaded from CSIT Tutor

Code Generation

It generates the assembly code for the target CPU from an optimized intermediate

representation of the program.

Ex: Assume that we have an architecture with instructions whose at least one of its

operands is a machine register.

A=b+c*d/f
MOVE ¢, R1
MULT d,R1
DIV f,R1
ADD b, R1
MOVE R1 A

One pass VS Multi-pass compiler

Each individual unique step in compilation process is called a phase such as lexical analysis,
syntax analysis, semantic analysis and so on. Different phases can be combined into one or more
than one group. These each group is called passes. If all the phases are combined into a single
group then this is called as one pass compiler otherwise more than one pass constitute the multi-

pass compiler.

One pass compiler

Multi-pass compiler

1. In a one pass compiler all the phases are
combined into one pass.

2. Here intermediate representation of source
program is not created.

3. It is faster than multi-pass compiler.

4. Itis also called narrow compiler.

5. Pascal’s compiler is an example of one
pass compiler.

6. A single-pass compiler takes more

space than the multi-pass compiler

. In multi-pass compiler different phases of

compiler are grouped into multiple phases.

. Here intermediate representation of source

program is created.

. Itis slightly slower than one pass compiler.
. Itis also called wide compiler.

. C++ compiler is an example of multi-pass

compiler.

. A multi-pass compiler takes less space

than the multi-pass compiler because in
multi-pass compiler the space used by
the compiler during one pass can be

reused by the subsequent pass.

By Bhupendra Singh Saud

Page 10

Downloaded from CSIT Tutor

Compiler Construction Tools

For the construction of a compiler, the compiler writer uses different types of software
tools that are known ascompiler construction tools. These tools make use of
specialized languages for specifying and implementing specific components, and most
of them use sophisticated algorithms. The tools should hide the details of the algorithm
used and produce component in such a way that they can be easily integrated into the
rest of the compiler. Some of the most commonly used compiler construction tools are:

* Scanner generators: They automatically produce lexical analyzers or scanners.
Example: flex, lex, etc

* Parser generators: They produce syntax analyzers or parsers. Example: bison, yacc
etc.

* Syntax-directed translation engines: They produce a collection of routines, which
traverses the parse tree and generates the intermediate code.

* Code generators: They produce a code generator from a set of rules that translates
the intermediate language instructions into the equivalent machine language
instructions for the target machine.

* Data-flow analysis engines: They gather the information about how the data is
transmitted from one part of the program to another. For code optimization, data-
flow analysis is a key part.

* Compiler-construction toolkits: They provide an integrated set of routines for
construction of the different phases of a compiler.

Symbol Tables

Symbol tables are data structures that are used by compilers to hold information about
source-program constructs. The information is collected incrementally by the analysis
phase of a compiler and used by the synthesis phases to generate the target code.
Entries in the symbol table contain information about an identifier such as its type, its
position in storage, and any other relevant information. Symbol tables typically need to
support multiple declarations of the same identifier within a program.

The lexical analyzer can create a symbol table entry and can return token to the parser,
say id, along with a pointer to the lexeme. Then the parser can decide whether to use a
previously created symbol table or create new one for the identifier.

The basic operations defined on a symbol table include
e allocate - to allocate a new empty symbol table
e free - to remove all entries and free the storage of a symbol table
e insert - to insert a name in a symbol table and return a pointer to its entry
e lookup - to search for a name and return a pointer to its entry
e set_attribute - to associate an attribute with a given entry
e get_attribute - to get an attribute associated with a given entry

By Bhupendra Singh Saud Page 11

Downloaded from CSIT Tutor

Other operations can be added depending on requirement

e For example, a delete operation removes a name previously inserted

Possible entries in a symbol table:
e Name: a string.
e Attribute:

Reserved word

Variable name

AN NN

Type name

Procedure name
Constant name

e Data type
e Scope information: where it can be used.
e Storage allocation, size...

Example: Let’s take a portion of a program as below:
void fun (int A, float B)

{

}

int D, E;
D=0;

E = A / round (B);

if (E >5)
{

Print D

}

Its symbol table is created as below:

Symbol Token Data type Initialization?
Fun Id Function name | No
A Id Int Yes
B Id Float Yes
D Id Int No
E Id Int No
Symbol Token Data type Initialization?
Fun Id Function name | No
A Id Int Yes
B Id Float Yes
D Id Int Yes
E Id Int Yes
By Bhupendra Singh Saud Page 12

Downloaded from CSIT Tutor

Error handling in compiler

Error detection and reporting of errors are important functions of the compiler.
Whenever an error is encountered during the compilation of the source program, an
error handler is invoked. Error handler generates a suitable error reporting message
regarding the error encountered. The error reporting message allows the programmer
to find out the exact location of the error. Errors can be encountered at any phase of the
compiler during compilation of the source program for several reasons such as:

* In lexical analysis phase, errors can occur due to misspelled tokens, unrecognized
characters, etc. These errors are mostly the typing errors.

* In syntax analysis phase, errors can occur due to the syntactic violation of the
language.

* In intermediate code generation phase, errors can occur due to incompatibility of
operands type for an operator.

* In code optimization phase, errors can occur during the control flow analysis due to
some unreachable statements.

* In code generation phase, errors can occurs due to the incompatibility with the
computer architecture during the generation of machine code. For example, a
constant created by compiler may be too large to fit in the word of the target
machine.

* In symbol table, errors can occur during the bookkeeping routine, due to the
multiple declaration of an identifier with ambiguous attributes.

What is a cross compiler?
A compiler which may run on one machine and produce the target code for another
machine is known as cross compiler. For example, a number of minicomputer and
microprocessor compilers are implemented in such a way that they run on bigger
machines and the output produced by them acts as an object code for smaller machines.
Thus, the cross compilation technique facilitates platform independence. It consists of
three symbols S, T and I, where:

* ‘S’ is the source language in which the source program is written,

* ‘T’ is the target language in which the compiler produces its output or target

program, and
* 'I" is the implementation language in which compiler is written.

Lexical Analysis

The lexical analysis is the first phase of a compiler where a lexical analyzer acts as an
interface between the source program and the rest of the phases of compiler. It reads the
input characters of the source program, groups them into lexemes, and produces a
sequence of tokens for each lexeme. The tokens are then sent to the parser for syntax
analysis. Normally a lexical analyzer doesn’t return a list of tokens; it returns a token

By Bhupendra Singh Saud Page 13

Downloaded from CSIT Tutor

only when the parser asks a token from it. Lexical analyzer may also perform other
auxiliary operation like removing redundant white space, removing token separator

(like semicolon) etc.

L _ Token
I;?OLH.CE — Lexical Parser —s
ograi Analvyzer “Cel nexi
l L token A ,I,
“ £
A '
error M s —
hy Fi
Symbol Table
Example:
newval := oldval + 12
tokens: newval identifier
= assignment operator
oldval identifier
+ add operator
12 a number

Put information about identifiers into the symbol table.

Regular expressions are used to describe tokens (lexical constructs).

A (Deterministic) Finite State Automaton (DFA) can be used in the implementation of a
lexical analyzer.

Tokens, Patterns, Lexemes

A token is a logical building block of language. They are the sequence of characters
having a collective meaning.

Example: identifier, keywords, integer constants, string constant etc

A sequence of input characters that make up a single token is called a lexeme.

A token can represent more than one lexeme. The token is a general class in which
lexeme belongs to.

Example: The token “String constant” may have a number of lexemes such as “bh”,

“sum”, “area”, “name” etc.
Thus lexeme is the particular member of a token which is a general class of lexemes.

Patterns are the rules for describing whether a given lexeme belonging to a token or not.
Regular expressions are widely used to specify patterns.

By Bhupendra Singh Saud Page 14

Downloaded from CSIT Tutor

Attributes of Tokens

When a token represents more than one lexeme, lexical analyzer must provide
additional information about the particular lexeme. This additional information is
called as the attribute of the token.

For simplicity, a token may have a single attribute which holds the required
information for that token.

Example: the tokens and the associated attribute for the following statement.

A=B*C+2

<id, pointer to symbol table entry for A>

<assig operator>

<id, pointer to symbol table entry for B>

<mult_op>

<id, pointer to symbol table entry for C>

<add_op>

<num, integer value 2>

Input Buffering

* Reading character by character from secondary storage is slow process and time consuming
as well. It is necessary to look ahead several characters beyond the lexeme for a pattern
before a match can be announced.

* One technique is to read characters from the source program and if pattern is not matched
then push look ahead character back to the source program.

* This technique is time consuming.

* Use buffer technique to eliminate this problem and increase efficiency.

Many times, a scanner has to look ahead several characters from the current character in
order to recognize the token.

For example int is keyword in C, while the term inp may be a variable name. When the
character ‘i” is encountered, the scanner cannot decide whether it is a keyword or a
variable name until it reads two more characters.

In order to efficiently move back and forth in the input stream, input buffering is used.

~ N =it N il
float x, y. =z AN L prin| tf(Thello world™); ... eof

lexeme foreard
paointer paointer

Fig: - An input buffer in two halves

Here, we divide the buffer into two halves with N-characters each.

By Bhupendra Singh Saud Page 15

Downloaded from CSIT Tutor

Rather than reading character by character from file we read N input character at once.
If there are fewer than N characters in input eof marker is placed.

There are two pointers (see in above fig.) the portion between lexeme pointer and
forward pointer is current lexeme. Once the match for pattern is found, both the
pointers points at the same place and forward pointer is moved.

The forward pointer performs tasks like below:
If forward at end of first half then,

Reload second half
Forward++
end if
else if forward at end of second half then,
Reload first half
Forward=start of first half
end else if
else
forward++

Recognition of tokens
To recognize tokens lexical analyzer performs following steps:
a. Lexical analyzers store the input in input buffer.
b. The token is read from input buffer and regular expressions are built for
corresponding token
c. From these regular expressions finite automata is built. Usually NFA is built.
d. For each state of NFA, a function is designed and each input along the transitional
edges corresponds to input parameters of these functions.

e. The set of such functions ultimately create lexical analyzer program.

Regular Expressions

Regular expressions are the algebraic expressions that are used to describe tokens of a

programming language.

Examples

Given the alphabet A = {0, 1}

1. 1(1+0)*0 denotes the language of all string that begins with a “1” and ends with a “0".

2. (1+0)*00 denotes the language of all strings that ends with 00 (binary number
multiple of 4)

3. (01)*+ (10)* denotes the set of all stings that describe alternating 1s and Os

4. (0*1 0*1 0* 1 0*) denotes the string having exactly three 1’s.

By Bhupendra Singh Saud Page 16

Downloaded from CSIT Tutor

5. 1*(0+ €)1*(0+ ¢) 1* denotes the string having at most two 0’s

6. A|B|C]......... |Z|a|b|c|........ lz|_|)(A|B|C]......... | Z | a
|b|c]......... [z _)@]2]ciiininnnen. | 9))* denotes the regular expression
to specity the identifier like in C. [TU]

7. (1+0)* 001 (1+0)* denotes string having substring 001

Regular Definitions
To write regular expression for some languages can be difficult, because their regular
expressions can be quite complex. In those cases, we may use regular definitions.

The regular definition is a sequence of definitions of the form,

dl —rl
d2 -2

dn — 10
Where d; is a distinct name and r; is a regular expression over symbols in ZU {d1, d2...
di-1)
Where, Z = Basic symbol and

{d1, d2... di-1} = previously defined names.

Regular Definitions: Examples
Regular definition for specifying identifiers in a programming language like C
letter > A | B | C|......... |Z|la|b|c]|........ | z
underscore —"_’
digit =0 | 1|2 |.cccceinnnnen | 9
id — (letter | underscore).(letter | underscore | digit)*
If we are trying to write the regular expression representing identifiers without using

regular definition, it will be complex.

A|B|C]........ |Z|la|b|c]|........ lz]|_])(A]|B|C]......... | Z|a|b|c
e BB R | 9))*
By Bhupendra Singh Saud Page 17

Downloaded from CSIT Tutor

Exercise
Write regular definition for specifying floating point number in a programming

language like C
Solm digit—0 |1 |2]...cceeennenn. | 9

fnum— digit * (.digit*)

Write regular definitions for specifying an integer array declaration in language like C

Sol~: letter - A | B | C|......... |Z|a|b|c]|......... | z
underscore —"_’
digit—>1 |2].cceeenennennn. | 9

array — (letter | underscore).(letter | underscore | digit)* ([digit*.0*])*

Design of a Lexical Analyzer
First, we define regular expressions for tokens; then we convert them into a DFA to get a lexical
analyzer for our tokens.

Algorithm1:
Regular Expression — NFA — DFA (two steps: first to NFA, then to DFA)
Algorithm2:
Regular Expression — DFA (directly convert a regular expression into a DFA)
Oppriovral
TErLEr NF.A : DEF.A
CHPTIressl1oOIlLs
Simulate ™NF . A Simulate DF.A
to recognize to recognize
tokens tokens

Non-Deterministic Finite Automaton (NFA)
An NFA is a 5-tuple (S, Z, §, s0, F) where
S is a finite set of states
2 is a finite set of symbols
O is a transition function
so € S is the start state
F € S is the set of accepting (or final) states
A NFA accepts a string X, if and only if there is a path from the starting state to one of
accepting states.

b §=1{0.1,2.3}
v f
Jar i T] a...b
start__ a ,(D b)_@‘) b ,_:@ L ¥
5o= 0
b F={3}
By Bhupendra Singh Saud Page 18

Downloaded from CSIT Tutor

Fig: - NFA for regular expression (a + b)*ab b

E- NFA
In NFA if a transition made without any input symbol is called e-NFA.
Here we need e-NFA because the regular expressions are easily convertible to e-NFA.

start
0)

Fig: - e-NFA for regular expression aa* +bb*

Deterministic Finite Automaton (DFA)

DFA is a special case of NFA. There is only difference between NFA and DFA is in the
transition function. In NFA transition from one state to multiple states take place while
in DFA transition from one state to only one possible next state take place.

Fig:-DFA for regular expression (a+b)*abb

Conversion: Regular Expression to NFA

Thomson’s Construction
Thomson’s Construction is simple and systematic method.
It guarantees that the resulting NFA will have exactly one final state, and one start state.
Method:
* First parse the regular expression into sub-expressions
* Construct NFA’s for each of the basic symbols in regular expression (r)
* Finally combine all NFA’s of sub-expressions and we get required NFA of given
regular expression.

1. To recognize an empty string ¢

By Bhupendra Singh Saud Page 19

Downloaded from CSIT Tutor

~, £ .
—(O—(2))
2. To recognize a symbol ain the alphabet b
RO (O)
3.If N (r1) and N (r2) are NFAs for regular expressions r1 and r2
a. For regular expression rl +1r2

g \I{Il A/
- /< >“Km N(r, +1,)

! g L “i_/
(O

b. For regular expression rl r2

4,(%1) NG | {:) The start state of N(r,) becomes the start state
— \ of N(r,r,) and final state of N(r,) become final
) state of N(r,1,)
N(r, 1,)

c. For regular expression r*
£

- @ W& '0)

N (1)
Using rule 1 and 2 we construct NFA’s for each basic symbol in the expression, we combine
these basic NFA using rule 3 to obtain the NFA for entire expression.

Example: - NFA construction of RE (a + b) * a

a: *Oi’© g Oa—'(){’/_

_ET
b: *O‘L© (a+b) H_X\C, b .(}E/'\g)

By Bhupendra Singh Saud Page 20

Downloaded from CSIT Tutor

/,C,.OH\

(a+b) *a

—
—— B

Conversion from NFA to DFA
Subset Construction Algorithm
Put e-closure (so) as an unmarked state in to Dstates
While there is an unmarked state T in Dstates do
mark T
for each input symbol 2 € Z do
U = e-closure (move (T, a))
if U is not in Dstates then

Add U as an unmarked state to Dstates
end if
Dtran[T, a] =
end do
end do

The algorithm produces:

Dstates is the set of states of the new DFA consisting of sets of states of the NFA
Dtran is the transition table of the new DFA

Subset Construction Example (NFA to DFA) [(at+b)*a]

™ a3 ﬁ
\Q\. 7 "Qf_g—f}'ll

) @#—@f’

. e —

- |
\E\CM b r"“‘x/ =

By Bhupendra Singh Saud

Downloaded from CSIT Tutor

Page 21

S, = e-closure({0}) = {0.1.2.4.7}

S, Into Dstafes as an unmarked state
[} mark S,

e-closure(move(S,.a)) = e-closure({3.8}) = {1.2.3.4.6.7.8} =S, S, into Dstates
e-closure(move(S,.b)) = e-closure({5}) = {1.2.4.5.6.7} =S,

S, into Dsfates
Dtran[Sy.a] € S, Diran[S,.b] € S,
U mark s,
e-closure(move(S,.a)) = e-closure({3.8}) = {1.2.3.4.6.7.8} =S,
e-closure(move(S,.b)) = e-closure({5}) = {1.2.4.5.6.7} = S,
Ditran [S,.a] € S, Ditran [S;.b] € S,
U mark s,

e-closure(move(S,.a)) = e-closure({3.8}) = {1.2.3.4.6.7.8} =5,
e-closure(move(S,.b)) = e-closure({5}) = {1.2.4.5.6.7} =S,
Dtran[S,.a] € S, Dtran[S,.b] € S,

SO is the start state of DFA since 0 is a member of S0= {0, 1, 2, 4, 7}
S1is an accepting state of DFA since 8 is a member of S1={1, 2, 3, 4, 6, 7, 8}

a

b\
This is final DFA

Exercise
Convert the following regular expression first into NFA and then into DFA
1. 0+ (1+0)*00

2. zero =0; one = 1; bit = zero + one; bits = bit*
3. aa*+bb*

4. (at+b)*abb
By Bhupendra Singh Saud

Page 22

Downloaded from CSIT Tutor

Conversion from RE to DFA Directly
Important States

A state S of an NFA without e- transition is called the important state if,
move({s}.a) =D

In an optimal state machine all states are important states

Augmented Regular Expression

When we construct an NFA from the regular expression then the final state of resulting
NFA is not an important state because it has no transition. Thus to make important state
of the accepting state of NFA we introduce an ‘augmented’ character (#) to a regular

expression r.

This resulting regular expression is called the augmented regular expression of original

expression r.

Conversion steps:

1. Augment the given regular expression by concatenating it with special symbol #

Le.r >(r) #

2. Create the syntax tree for this augmented regular expression
In this syntax tree, all alphabet symbols (plus # and the empty string) in the
augmented regular expression will be on the leaves, and all inner nodes will be
the operators in that augmented regular expression.
3. Then each alphabet symbol (plus #) will be numbered (position numbers)
4. Traverse the tree to construct functions nullable, firstpos, lastpos, and followpos
5. Finally construct the DFA from the followpos

Rules for calculating nullable, firstPos and lastPos:

with position 1

(position of leaf node)

node n nullable(n) firstpos(n lastpos(n)
1s leaf labeled ¢ true @ @
is leaf labeled false {1} 1}

nullable(c,) or

firstpos(c,)u firstpos(c,)

lastpos(c,) w lastpos(c,)

cf \CT nullable(c,)
n/t \ nullable(c,) if (nullable(c,)) then if (nullable(c,)) then
c; © and firstpos(c,) wiirstpos(c,) | lastpos(c,) w lastpos(c,)
nullable(c,) else firstpos(c;) else lastpos(c,)
n * true firstpos(c,) lastpos(c;)
G
By Bhupendra Singh Saud Page 23

Downloaded from CSIT Tutor

Algorithm to evaluate followpos
for each node 7 in the tree do
if 1 is a cat-node with left child c1 and right child c2 then
for each i in lastpos(c1) do
followpos(i) = followpos(i) U firstpos(c2)
end do
else if 7 is a star-node
for each i in lastpos(n) do
followpos(i) = followpos(i) U firstpos(n)
end do
end if
end do

How to evaluate followpos: Example
For regular expression: (a|b) " a #
{1.2.3} e {4}

N

(1.2}] 1.2} Then we can calculate followpos
K followpos(1) = {1.2.3}
followpos(2) = {1.2.3}
followpos(3) = {4}
followpos(4) = {}

After we calculate follow positions, we are ready to create DFA for the regular
expression.

Conversion from RE to DFA Examplel
Note: - the start state of DFA is firstpos(root)
the accepting states of DFA are all states containing the position of #
Convert regular expression (a | b) * a into DFA
Its augmented regular expression is;
(a|b)"a#
1 2 34
The syntax tree is:

By Bhupendra Singh Saud Page 24

Downloaded from CSIT Tutor

Now we calculate followpos,
followpos(1)={1,2,3}
followpos(2)={1,2,3}
followpos(3)={4}
followpos(4)={}

S,=firstpos(root)={1,2,3}
mark S;
Jor a: followpos(l) < followpos(3)={1,2,3,4}=S,
Jor b: followpos(2)={1,23}=S;
mark S,
Jor a: followpos(l) < followpos(3)={1,2,3,4}=S,
Jor b: followpos(2)={1,23}=S;

Now

start state: S,

accepting states: {S,}

Note:- Accepting states=states containing position of # ie 4.

b
s

—b

_ (';; >
N)a { s, N\ v
\.\-._ ! — k\. __ _/
= ;7//

move(S;a)=S,
move(S;b)=S;

move(S,,a)=S,
move(S,,b)=S,

Fig: Resulting DFA of given regular expression

Conversion from RE to DFA

Example?2
For RE----(a|g)bc*#
1 234

followpos(1)={2}
followpos(2)={3,4}

By Bhupendra Singh Saud

Downloaded from CSIT Tutor

Page 25

followpos(3)={3,4}
followpos(4)={}

S1=firstpos(root)={1,2}

lmark S1

for a: followpos(1)={2}=S2 move(S1,a)=S2

for b: followpos(2)={3,4}=S3 move(S1,b)=S3
lmark S2

for b: followpos(2)={3,4}=S3 move(S2,b)=S3
lmark S3

for c: followpos(3)={3,4}=S3 move(S3,c)=S3

Start state: S1
Accepting states: {S3}

Fig: - DFA for above RE

State minimization in DFA
Partition the set of states into two groups:
- G1: set of accepting states

- G2: set of non-accepting states

For each new group G:

- partition G into subgroups such that states s1 and s2 are in the same group if
for all input symbols a, states s1 and s2 have transitions to states in the same group.
Start state of the minimized DFA is the group containing the start state of the original
DFA.

Accepting states of the minimized DFA are the groups containing the accepting states of
the original DFA.

By Bhupendra Singh Saud Page 26

Downloaded from CSIT Tutor

State Minimization in DFA
Examplel:

N\ G =1{2)
,@\5 G,= {13}

b |a @G, cannot be partitioned because

b
3} move(l.a)=2 move(1.b)=3
.g move(3.a)=2 move(2.b)=3

So, the minimized DFA (with minimum states)

b a
a N
fon o
N (&)
R’ b

Groups: {1.2.3} {4}
12} 3 a__ b
no more partitioning 1-=2 1-=3
2.=2 2-=3
3-=4 3-=3
RPN
Y
b
By Bhupendra Singh Saud Page 27

Downloaded from CSIT Tutor

Flex: Language for Lexical Analyzer
Systematically translate regular definitions into C source code for efficient scanning.
Generated code is easy to integrate in C applications

lex
cource lex or ﬂex lex.yy.c
program CDHJp]]EI'
lex.1l
lex . ¥yv.C — C_ 3 a . out
compiler ‘
mnput sequence
A a.out I L
stream of tokens

Flex: An introduction

Flex is a tool for generating scanners. A scanner is a program which recognizes lexical
patterns in text. The flex program reads the given input files, or its standard input if no
tile names are given, for a description of a scanner to generate. The description is in the
form of pairs of regular expressions and C code, called rules. flex generates as output a
C source file, ‘lex.yy.c’ by default, which defines a routine yylex(). This file can be
compiled and linked with the flex runtime library to produce an executable. When the
executable is run, it analyzes its input for occurrences of the regular expressions.
Whenever it finds one, it executes the corresponding C code.

Flex specification:

A flex specification consists of three parts:
Regular definitions, C declarations in %f{ %}
%%

Translation rules

%%

User-defined auxiliary procedures

The translation rules are of the form:
pl {actionl}
p2 {action2}

Pn { action, }
In all parts of the specification comments of the form /* comment text */ are permitted.

By Bhupendra Singh Saud Page 28

Downloaded from CSIT Tutor

Reqular definitions:
It consist two things:’\’

— Any C code that is external to any function should be in %f{ %}

— Declaration of simple name definitions i.e specifying regular expression e.g
DIGIT [0-9]
ID [a-z][a-z0-9]*

The subsequent reference is as {DIGIT}, {DIGIT}+ or {DIGIT}*

Translation rules:

Contains a set of regular expressions and actions (C code) that are executed when the scanner
matches the associated regular expression e.g

{ID} printf(“%s”, getlogin());

Any code that follows a regular expression will be inserted at the appropriate place in the
recognition procedure yylex()

Finally the user code section is simply copied to lex.yy.c

Practice
* Get familiar with FLEX
1. Try sample*.lex
2. Command Sequence:
flex sample*.lex
gcc lex.yy.c -Ifl
Ja.out

Flex operators and Meaning

X match the character x

\. match the character .

“string” match contents of string of characters

. match any character except newline

N match

beginning of a line

$ match the end of a line

[xyz] match one character X, y, or z (use \ to escape -)
["xyz] match any character except X, y, and z

[a-Z] match one of ato z

r* closure (match zero or more occurrences)

r+ positive closure (match one or more occurrences)
r? optional (match zero or one occurrence)

rir2 match rl then r2 (concatenation)

rijr2 match rl or r2 (union)

(r) grouping

ri\r2 match r1 when followed by r2

{d} match the regular expression defined by d
‘r{2,5}’ anywhere from two to five r’s

‘r{2,}’ two or more 1’s

‘r{4}’ exactly 4 1’s

By Bhupendra Singh Saud Page 29

Downloaded from CSIT Tutor

Flex Global Function, Variables & Directives

yylex() is the scanner function that can be invoked by the parser

yytext extern char *yytext; is a global char pointer holding the currently matched lexeme.

yyleng extern int yyleng; is a global int that contains the length of the currently matched lexeme.
ECHO copies yytext to the scanner’s output

REJECT directs the scanner to proceed on to the ’second best” rule which matched the input
yymore() tells the scanner that the next time it matches a rule, the corresponding token should be
appended onto the current value of yytext rather than replacing it.

yyless(n) returns all but the first n characters of the current token back to the input stream, where
they will be rescanned when the scanner looks for the next match

unput(c) puts the character ¢ back onto the input stream. It will be the next character scanned
input() reads the next character from the input stream

YY_FLUSH_BUFFER flushes the scanner’s internal buffer so that the next time the scanner
attempts to match a token; it will first refill the buffer.

Flex Examplel

Contains

%1 the matching
#include <stdio.h> lexeme
%}
Rules %%
[0-9]1+ { printf(“%s\n”, yytext); }
. I\n { }
5% 0 Invokes
malll -
(Yylex”;(______-——tlle lexical
} analvzer

Example2

/*
* Description: Count the number of characters and the number of lines
* from standard input
* Usage:
(1) $ flex sample2.lex
*(2) $ gec lex.yy.c -Ifl
*(3) $ Ja.out
* stdin> whatever you like
* stdin> Ctrl-D
* Questions: Is it ok if we do not indent the first line?
* What will happen if we remove the second rule?
*/
int num_lines =0, num_chars = 0;

By Bhupendra Singh Saud Page 30

Downloaded from CSIT Tutor

%%

\n ++num_lines; ++num_chars;
++num_chars;

%%
main()
{

yylex();

printf("# of lines = %d, # of chars = %d\n", num_lines, num_chars);
}

Syntax Analysis

A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the given source
program.

Syntax analyzer is also called the parser. Its job is to analyze the source program based on the
definition of its syntax. It works in lock-step with the lexical analyzer and is responsible for
creating a parse-tree of the source code.

Ex: newval: = oldval + 12

assign-stmt

T
o T
- -

L T + In a parse tree, all terminals are at leaves.
identifier = cXpression » All inner nodes are non-termuinals in

/\'H--H__h a context free grammar.

.

newval expression + expression
identifier number
oldval 12

The syntax of a language is specified by a context free grammar (CFG).

The rules in a CFG are mostly recursive.

A syntax analyzer checks whether a given program satisfies the rules implied by a CFG or not.
— If it satisfies, the syntax analyzer creates a parse tree for the given program.

By Bhupendra Singh Saud Page 31

Downloaded from CSIT Tutor

Token

Source Lexi
exical : —>
poee Parser
oI Analyzer Get next
l * token 7 l
\ Fi
\ F
. Ll f
erTol1 A \ Fi eITor
A Fi
Symbol Table

Context-Free Grammars

Context-free grammar is a 4-tuple G = (N, T, P, S) where
* T is a finite set of tokens (terminal symbols)
* N is a finite set of non-terminals
* P is a finite set of productions of the form
o — B
Where,
o = (W_T)*FE W (N _THY*F and B = (MW T)*
* S € Nis adesignated start symbol

Programming languages usually have recursive structures that can be defined by a context-free
grammar (CFG).

CEG: Notational Conventions

Terminals are denoted by lower-case letters and symbols (single atoms) and bold strings (tokens)
a,bc.. €T

specific terminals:
0,1,id, +

Non-terminals are denoted by lower-case italicized letters or upper-case letters symbols
A B C...eN

specific non-terminals:
expr, term, stmt

Production rules are of the form

A —> CL. that is read as “A can produce o”

Strings comprising of both terminals and non-terminals are denoted by greek letters

a,p,etc

By Bhupendra Singh Saud Page 32

Downloaded from CSIT Tutor

L eft-most derivation:

If we always choose the left-most non-terminal in each derivation step, this derivation is called
as left-most derivation.

Eg:-

E e -E = -(E) = -(E+E) = -(1d+E) = -(1d+1d)

Right-most derivation:
If we always choose the right-most non-terminal in each derivation step, this derivation is called
as right-most derivation.
Eg:
E = -E = -(E) = -(E+E) = «(E+id) = -(id+id)

Parse Treese
A parse tree is a graphic representation of a CFG with the following properties:

e The root node is labeled by start symbol.
e Inner nodes of a parse tree are non-terminal symbols.
e The leaves of a parse tree are terminal symbols.

Eg: let us consider a CFG:
E - E+E|E*E|(E)|—E|id
Then the parse tree for —(id+id) is:

P

t—H—

vy

{//
-
E
1'|+:l

Ambiguity of a grammar:
A grammar G is said to be ambiguous if there is a string we L(G) for which we can
construct more than one parse tree rooted at start symbol of the production.
Eg: let us consider a CFG:
E - E+E|E *E|(E)|—E|id
The parse trees for the string id + id*id is as follows:
E-E+EFE—>E+E*E->id+ E*E— id + id*E- id + id*id

By Bhupendra Singh Saud Page 33

Downloaded from CSIT Tutor

E + E
[N
id E * E
| |
id 1d

Another possible parse tree is:
E
N
E E
7 +| ~ |

]I|E]T_ 1d

id 1d
Thus the above grammar is ambiguous.

Parsing

Given a stream of input tokens, parsing involves the process of reducing them to a non-
terminal. Parsing can be either top-down or bottom-up.
Top-down parsing involves generating the string starting from the first non-terminal and
repeatedly applying production rules.
Bottom-up parsing involves repeatedly rewriting the input string until it ends up in the first non-
terminal of the grammar.

Top-Down Parsing
The parse tree is created top to bottom.
Top-down parser
— Recursive-Descent Parsing
— Predictive Parsing
Recursive-Descent Parsing
» Backtracking is needed (If a choice of a production rule does not work, we backtrack to
try other alternatives.)
» It is a general parsing technique, but not widely used.
* Not efficient
It tries to find the left-most derivation
Example: Consider the grammar,
S - aBc

By Bhupendra Singh Saud Page 34

Downloaded from CSIT Tutor

B - bc|b
and the input string “abc” parsed using Recursive-Descent parsing.
Step 1: The first rule S - aBc to parse S

S
a B

Step 2: The next non-terminal is B and is parsed using production B — bc as,
a B

&
i
r
F
r
Py
E)

L

Fails

Step 3: Which is false and now backtrack and use production B — b to parse for B

Method: let input w = abc, initially create the tree of single node S. The left most node a match
the first symbol of w, so advance the pointer to b and consider the next leaf B. Then expand B
using first choice bc. There is match for b and ¢, and advanced to the leaf symbol ¢ of S, but
there is no match in input, report failure and go back to B to find another alternative b that
produce match.

Left Recursion
A grammar is left recursive if it has a non-terminal A such that there is a derivation.
A - Aa For some string a

By Bhupendra Singh Saud Page 35

Downloaded from CSIT Tutor

Top-down parsing techniques cannot handle left-recursive grammars.

So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-
recursive.

Eg:
Immediate Left-Recursion:
A—Aa|B
Eliminate immediate left recursion
A— BA’
A’—>0aA’ | €
In general,
A>Aoao | [Aoy|B|--[B, where (3, ... B, do not start with A
U eliminate immediate left recursion
A->B A | B A
Ao, A | Joy,A e an equivalent grammar

Immediate Left-Recursion - Example

E—-E+T | T

T—T*F | F

F—id | (E)

U eliminate immediate left recursion

ESTE

E—+TE |&

T—>FT

T—*T |&

F—id | (E)

Non-Immediate Left-Recursion

By just eliminating the immediate left-recursion, we may not get a grammar which is not left-
recursive.

By Bhupendra Singh Saud Page 36

Downloaded from CSIT Tutor

S—Aalb

A — Sc | d This grammar 15 not immediately left-recursive.
but it 1s still left-recursive.

S = Aa— Sca or

A = Sc= Aac causes to a left-recursion

So. we have to eliminate all left-recursions from our grammar

So. the resulting equivalent grammar which 1s not left-recursive 1s:
S—Aalb
A —=hdA | fA
A —>cA| adA |e

Left-Factoring

When a no terminal has two or more productions whose right-hand sides start with the
same grammar symbols, then such a grammar is not LL(1) and cannot be used for predictive
parsing. This grammar is called left factoring grammar.
Eg:

Replace productions
A—>oapylapy|...|lapB,|y

with
A—oad’|y

A= By B2l - | Ba

Hint: taking o common from the each production.

Example: Eliminate left factorial from following grammar:
S—iEisS|iEisis|a
B—b
Solution: S—>iEiSS’| a
S’—>iS
B—ob

Predictive Parsing
A predictive parser tries to predict which production produces the least chances of a
backtracking and infinite looping.
When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a
production rule by just looking the current symbol in the input string.
Two variants:

— Recursive (recursive-descent parsing)

— Non-recursive (table-driven parsing)

By Bhupendra Singh Saud Page 37

Downloaded from CSIT Tutor

Non-Recursive Predictive Parsing

Non-Recursive predictive parsing is a table-driven parser.

Given an LL(1) grammar G = (N, T, P, S) construct a table M[A,a] for A€ N, a €T and use a
driver program with a stack.

A table driven predictive parser has an input buffer, a stack, a parsing table and an output
stream.

input a|+|b|S
stack — :
. Predictive parsing
Xl .. [output
program (driver)
¥
Z Parsing table
$ M
Fig model of a non-recursive predictive parser
Input buffer:
It contains the string to be parsed followed by a special symbol $.
Stack:

A stack contains a sequence of grammar symbols with $ on the bottom. Initially it contains the
symbol $.

Parsing table:

It is a two dimensional array M [A, a] where ‘A’ is non-terminal and ‘a’ is a terminal symbol.
Output stream:

A production rule representing a step of the derivation sequence of the string in the input buffer.

By Bhupendra Singh Saud Page 38

Downloaded from CSIT Tutor

Input - a string w. Algorithm
Output: if w is in L(G), a leftmost derivation of w; otherwise error

1. Set ip to the first symbol of mput stream
2. Set the stack to $5 where S 1s the start symbol of the grammar

3. repeat
Let X be the top stack symbol and a be the symbol pomnted by ip
If X 1s a termunal or § then
1f X = a then pop X from the stack and advance ip
else error()
else /* X 15 a non-ternunal */
ifM(X a] =X—¥I1 Y2, ., __, ¥r then
pop X from stack
push ¥, ¥&-1, ..., ..., Y1 onto stack (with ¥J on top)
output the production X — ¥1, 2, ..., ¥k
else error()

4 untl X =§ /* stack 1s empty */

Example: Given a grammar,

S5 —aBa
B—hB |z
Input: abba
stack input output
$S abba$ S — aBa
$aBa abba$
$aB bba$ B —bB
$aBb bba$
$aB ba$ B = bB
$aBb ba$
$aB a$ B¢
$a a$
$ $ accept, successful completion
a b)
S |S—+aBa

B |[B—:= B —=bB

LL(1) Parsing Table

By Bhupendra Singh Saud Page 39

Downloaded from CSIT Tutor

Outputs: S —+aBa B —=bB B —0bB B—s:
Derivation(left-most): S = aBa = abBa = abbBa = abba

b T
parse tree
=

Constructing LL(1) Parsing Tables
e Eliminate left recursion from grammar
e Eliminate left factor of the grammar

a grammar = 2> a grammar suitable for predictive
eliminate elml ﬁm‘e parsing (a LL(1) grammar)
. L
left recursion
factor

To compute LL (1) parsing table, at first we need to compute FIRST and FOLLW functions.

Compute FIRST

FIRST(a) is a set of the terminal symbols which occur as first symbols in strings derived from o

where o is any string of grammar symbols.
If a derives to €, then € is also in FIRST (o).
Compute FIRST algorithm:

1. IfXisa terminal symbol then FIRST(X) = {X}

2. If X 1s a non-terminal symbol and X — £ 1s a production rule then
FIRST(X) =FIRST(X) U =.

3. If X 1s a non-terminal symbol and X — Y,Y,_Y, 15 a production rule then
a. if a terminal a in FIRST(Y,) then FIRST(X) = FIRST(X) u FIRST(Y,)
b.1f a termunal a 1 FIRST(Y) and ¢ 1s i all FIRST(Y) for j=1....1-1 then

FIRST(X) = FIRST(X) U a.
c. if e 15 mn all FIRST(Y}) for j=1....n then FIRST(X) =FIRST(X) we.

+ IfXisethen FIRST(X)={s}

- KXisY,Y,Y,
a. if a terminal a 1n FIRST(Y) and ¢ 1s m all FIRST(Y)) for j=1.....1-1 then

FIRST(X) = FIRST(X) U a
b.1f € 1s 1n all FIRST(Y)) for j=1... .n then FIRST(X) =FIRST(X) we.

By Bhupendra Singh Saud

Downloaded from CSIT Tutor

Page 40

Compute FIRST: Example

E—>TE

E -+TE | €

T—SFT

T >*T | =

F—(E) | id

FIRST(s)= {(.id} FIRST(TE') = { (.1d}
FIRST(T') = {*. &} FIRST(+TE") = {+}
FIRST(T) = {(.id} FIRST(e) = {e}
FIRST(E') = {+. £} FIRST(FT }r= {(.id}
FIRST(E) = { (.id} FIRST(*FT') = {*}

FIRST(z) = {=}
FIRST((E))={(}
FIRST(id) = {id}

Compute FOLLOW:

FOLLOW (A) is the set of the terminals which occur immediately after (follow) the non-
terminal A in the strings derived from the starting symbol.
— aterminal a is in FOLLOW(A) if S = aAap

- $1sin FOLLOW(A) if S cA
Compute FOLLOW algorithm:

Apply the following rules until nothing can be added to any
FOLLOW set:

1.

-
o

If S 1s the start symbol then $ 1s in FOLLOW(S)

if A — oBp is a production rule then everything in FIRST(P) 1s placed in
FOLLOW(B) except £

If (A — oB 1s a production rule) or (A — oBp 1s a production rule and € 1s
in FIRST(B)) then everything in FOLLOW(A) is in FOLLOW(B).

Compute FOLLOW: Example

E > TE
E —»+TE | ¢
T—FT
T - *FT | =
F—(E) | id

FOLLOW(E) =
FOLLOW(E') =
FOLLOW(T) =
FOLLOW(T) =
FOLLOW(F) = {+. *

e B e B e B i

)
$.)
+).
+.)

Constructing LL(1) Parsing Tables

If we can always choose a production uniquely by using FIRST and FOLLOW functions
then this is called LL(1) parsing where the first L indicates the reading direction (Left-to

By Bhupendra Singh Saud

Downloaded from CSIT Tutor

-right) and second L indicates the derivation order (left) and 1 indicates that there is a
one-symbol look-ahead. The grammar that can be parsed using LL(1) parsing is called

an LL(1) grammar.

Algorithm

Input: LL(1) Grammar G
Output: Parsing Table M

for each production rule A — o of a grammar G

for each termunal a in FIRST ()
add A — o to M[A.a]

If £ in FIRST(c) then

for each termunal a m FOLLOW(A)
add A — o to M[A.a]

It £ in FIRST() and $ m FOLLOW(A) then

add A — o to M[A$]

Constructing LL(1) Parsing Tables: Examplel

E—->TE

E'—>+TE'|¢

T ->FT

T—>*FT|¢

F > (E)|id
Solution:

FIRST(F)= {(.1d}
FIRST(T)= {*. =}
FIRST(T)= {(.1d}
FIRST(E') = {+. &}
FIRST(E)= {(.id}
FIRST(TE") = { (.1d}
FIRST(+TE")= {+}
FIRST(=) = {g}
FIRST(=T') = { (.id}
FIRST(*=7T")={*}
FIRST(s) = {&}
FIRST((E))={(}
FIRST(1id) = {id}

FOLLOW(E)={S, FRST (' Ji={5.)
FOLLOW(E')=] FOLLOW(E)=(5,)
FOLLOW(T)={FRST(E "), FOLLOWE)}=(+.). S}
FOLLOW(T)={ FOLLOW(T)}={+.). 5}

FOLLOW(F)={ FOLLOW(T") FIRS (T Jexeept 2 =), 5, %}

——

By Bhupendra Singh Saud

Downloaded from CSIT Tutor

Page 42

Non-
terminals Terminal Symbols
+ * () id $
E E—TE E—TE
E’ E — +TE E —>=¢ E —¢
T T —FT T—FT
T° T—¢& T — *FT T—E T—E
F F — (E) F —id

Constructing LL(1) Parsing Tables: Example2
S —iEtSS’| a
S’ —eS| €

E—b

Construct LL(1) parsing table for this grammar.

Solution:

FIRST(S)={i, a}
FIRST(S’)={e, €}

FIRST(E)={b}

FIRST(iEtSS’)={i}

FIRST(a)={a}

FIRST(eS)={e}

FIRST(€)={e}

FOLLOW(S)={ FIRST(S")}={e, $!
FOLLOW(S")={FOLLOW(S)}={e, $}
FOLLOW(E)={FIRST(tSS’)}={t}
FIRST(b)={b}

Construct table itself.

[Q] Produce the predictive parsing table for [HW]
a. S—»0S1]|01
b. The prefix grammarS —+SS | *SS | a

By Bhupendra Singh Saud

Page 43

Downloaded from CSIT Tutor

LL(1) Grammars
A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.
What happen when a parsing table contains multiply defined entries?
— The problem is ambiguity
A left recursive, not left factored and ambiguous grammar cannot be a LL(1) grammar (i.e. left
recursive, not left factored and ambiguous grammar may have multiply —defined entries in
parsing table)

Properties of LL(1) Grammars

one input symbol used as a look-head symbol do determine parser action

LL(1) P left most derivation

input scanned from left to nght

A grammar G 1s LL(1) if and only if the following conditions hold for
two distinctive productionrules A —- o and A —p

. Both o and P cannot derive strings starting with same terminals.

. At most one of « and P can derive to €.

el Bl e

. If B can derive to =, then o cannot derive to any string starting with a
termunal m FOLLOW(A).

Exercise:
Q. For the grammar,
S —[C]S|e
C—{A}C|€e
A —A()| € Construct the predictive top down parsing table (LL (1) parsing table)

Conflictin LL (1):
When a single symbol allows several choices of production for non-terminal N then we

say that there is a conflict on that symbol for that non-terminal.

Example: Show that given grammar is not LL(1).

S—aA | bAc

A —c | €

Solution:

FIRST(S)={a, b} FIRST(A)={C

FIRST(aA)={a} FIRST(bAc)=

e}

ib} FIRST(c)={c} FIRST (¢)={e}

FOLLOW(S)={ $ }
FOLLOW(A)={$, c }

S S—aA S—bAC

A —¢€

By Bhupendra Singh Saud Page 44

Downloaded from CSIT Tutor

A conflict emerges when the parser gets ¢ token to which it does not know the rule to apply. So
this grammar is not LL(1).

Bottom-Up Parsing

Bottom-up parsing attempts to construct a parse tree for an input string starting from leaves (the
bottom) and working up towards the root (the top). It is also called LR(K) parsing.

Reduction:
The process of replacing a substring by a non-terminal in bottom-up parsing is called reduction.
It is a reverse process of production.
Eg: S—aA
Here, if replacing aA by S then such a grammar is called reduction.

Shift-Reduce Parsing
The process of reducing the given input string into the starting symbol is called shift-reduce
parsing.

A string, —_ the starting symbol
Reduced to
Example:
S — aABb
A—aA | a
B—bB |b

S = aABb = aAbb = aaAbb = aaabb
m Im m m

mput string: aaabb
aaAbb
aAbb Ul reduction
aABD
S

Handle

A substring that can be replaced by a non-terminal when it matches its right sentential form is
called a handle.

If the grammar is unambiguous, then every right-sentential form of the grammar has exactly one
handle.

Example 1: Let’s take a grammar

By Bhupendra Singh Saud Page 45

Downloaded from CSIT Tutor

ESE+T|T

T—>T*F|F Right Sentential Handle Reducing
F—(E)|id Form Production
id1 * id2 idl F—id
F*id2 F T—>F
T*id2 id2 F—id
T*F T*F E—-T*F

Example 2: A Shift-Reduce Parser with Handle

E—E+T |T Right-Most Dernivation of 1d-+id*id
T—T*F |F E = E+T = E+T*F = E+T*id = E+F*ud
F—(E) | id = E+id*id = T+id*1d = F+id*id = 1d+1d*id

Richt-Most Sentential Form Reducine Production Handle

id+id*id F—id id
F+id*id T F F
T+id*id E—>T T
E-+id*id F—id id
E+F*id T SF E
E+T*id F—id id
E+T*F T — T*F T*F
E=T E — E+T E+T
E

Stack Implementation of Shift-Reduce Parser

The stack holds the grammar symbols and input buffer holds the string w to be parsed.

1. Initially stack contains only the sentinel $, and input buffer contains the input string w$.

2. While stack not equal to $S or not error and input not $ do
(a) While there is no handle at the top of stack, do shift input buffer and push the symbol
onto stack
(b) If there is a handle on top of stack, then pop the handle and reduce the handle with its
non-terminal and push it onto stack

3. Done

Parser Actions:
1. Shift: The next input symbol is shifted onto the top of the stack.
2. Reduce: Replace the handle on the top of the stack by the non-terminal.
3. Accept: Successful completion of parsing.
4. Error: Parser discovers a syntax error, and calls an error recovery routine
Example 1: Use the following grammar

By Bhupendra Singh Saud Page 46

Downloaded from CSIT Tutor

Stack Input Action

$ 1d+1d*1dS shaft

$1d +1d*1d% reduce by F — 1d Parse Tree

$F +1d*1d$ reduce by T -+ F How t_D

$T +1d*1d$ reduce by E - T t;z;:ttz R ES8

SE +id*id$ shift Pl I

$E+ 1d*1d$ shift E 3 + T 7

$E+id *1d$ reduce by F —1d f,f"ffl\m‘mxm
$SE+F *id$ reduce by T — F T2 TS5 * F6
SE+T *1d% shift (or reduce?) | |
$E+T* 1d$ shift F1 F 4 1d
$E+T*1d $ reduce by F — 1d |

$E+T*F $ reduce by T — T*F 1d id

$E+T 5 reduce by E — E+T

$E $ accept

Conflicts in Shift-Reduce Parsing
Some grammars cannot be parsed using shift-reduce parsing and result in conflicts. There are
two kinds of shift-reduce conflicts:

shift/reduce conflict:
Here, the parser is not able to decide whether to shift or to reduce.
Example:
A — ab | abcd
the stack contains $ab, and
the input buffer contains cd$, the parser cannot decide whether to reduce $ab to $A or to shift
two more symbols before reducing.

reduce/reduce conflict:
Here, the parser cannot decide which sentential form to use for reduction.
For example
A — bc
B —sabc and the stack contains $abc, the parser cannot decide whether to reduce it to $aA or to
$B.

LR Parsers

— LR parsing is most general non-backtracking, efficient and most powerful shift-reduce parsing.
— LL(1)-Grammars =LR(1)-Grammars

— An LR-parser can detect a syntactic error so fast.

By Bhupendra Singh Saud Page 47

Downloaded from CSIT Tutor

LR(K) passing

left to right right-most klookhead
scanning derivation (k 15 omitted = it 15 1)

LR-Parsers cover wide range of grammars.

* SLR —simple LR parser

* LR — most general LR parser

* LALR - intermediate LR parser (look-head LR parser)
SLR, LR and LALR work same (they used the same algorithm), only their parsing tables are
different.

LR Parsers: General Structure

mput | a; | ay | ... | a; a, | S
stack
s, [LR Parsing Program —— output
State symbol
- ’Xm
Grammar
Sﬂ‘]-l L L
symbol Toron Tahl
(terminal or Xl chion 14 le ds Goto Table
non-terminal 5 terminals an non-ternunal
1 5 ; -
a | fourdifferent |§| S3Chitemt
S 1 actions (shift, |t
e [~
< 5

reduce, accept,
£1101)

Constructing SLR Parsing Tables

For constructing a SLR parsing table of given grammar we need,

To construct the canonical LR(0) collection of the grammar, which uses the ‘closure’ operation
and ‘goto’ operation.

By Bhupendra Singh Saud Page 48

Downloaded from CSIT Tutor

LR(0) Item:
An LR(0) item of a grammar G is a production of G with a dot (.) at some position of the right
side.
Eg: the production
A —aBb vyields the following 4 possible LR(0) items which are:
A —.aBb
A —a.Bb
A —aB.b
A —aBb.

Note: - The production A —€ generates only one LR(0) item, A —.

canonical LR(0) collection:

A collection of sets of LR(0) items is called canonical LR(0) collection.

To construct canonical LR(0) collection for a grammar we require augmented grammar and
closure & goto functions.

Augmented grammar:
If G is a grammar with start symbol S, then the augmented grammar G’ of G is a grammar with a
new start symbol S’ and production S” —S
Eg: the grammar,

E—-E+T]|T

T->T*F|F

F—(E)|id
Its augmented grammar is;

E’—E

E—-E+T|T

T->T*F|F

F—-(E)]|id

The Closure Operation:

Say I is a set of items and one of these items is A—a-Bf. This item represents the parser having
seen o and records that the parser might soon see the remainder of the RHS. For that to happen

the parser must first see a string derivable from B. Now consider any production starting with B,
say B—v. If the parser is to making progress on A—a-Bp, it will need to be making progress on

one such B—-y. Hence we want to add all the latter productions to any state that contains the
former. We formalize this into the notion of closure.

Definition:
If 1 is a set of LR(0) items for a grammar G, then closure(l) is the set of LR(0) items constructed
from I by the two rules:

1. Initially, every LR(0) item in I is added to closure(l).

By Bhupendra Singh Saud Page 49

Downloaded from CSIT Tutor

2. If A — a.Bp is in closure(l) and B—vy is a production rule of G then add B—.y in the
closure(l) repeat until no more new LR(0) items added to closure(l).

The Closure Operation: Example
Consider a grammar:
E—-E+T|T
T>T*F|F
F—(E)]|id
Its augmented grammar is;
E’ —E
E-E+T|T
T->T*F|F
F—(E)]|id
Now closure (E> —E) contains the following items:
E*—.E
E—->E+T
E—T
T->T*F
T—.F
F—.(E)
F—.id

The goto Operation:
If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then goto(l,X)
is defined as follows:
If A — o.Xp in | then every item in closure({A — aX.}) will be in goto(1,X).
Example:
I={FP>EE->E+tT,E->.T, T>.T*F, T—> .F,F— .(E),F—.id}
goto(l,E) = closure({[E’ > E* E—E<*+T]}))={E’—>E.,, E>E+T}
goto(I,T)={E—-T.,, T—>T*F}
goto(l,LF) ={T —F. }
goto(l,() = closure({[F —(E)]})
={F—>(E),E—> E+T,E—>.T, T>.T*F, T—> .F,F—> .(E),F—.id}
goto(l,id) ={ F —id. }

Construction of canonical LR(0) collection
Algorithm:
Augment the grammar by adding production S> — S

C = { closure({S’—.S}) }
repeat the followings until no more set of LR(0) items can be added to C.

for each I in C and each grammar symbol X

if goto(l,X) is not empty and not in C
add goto(1,X) to C

By Bhupendra Singh Saud Page 50

Downloaded from CSIT Tutor

Example: The augmented grammar is:
C—-C
C—AB
A—a
B—a
lo = closure (C* — «C)
I, = goto(lp,C) = closure(C’ — Ce)

and so on
.(S_:m e Iéﬁ final State I,
goto(1,.C) - C —> 4 Be
L /
- State I, - State L. goto(1,.B)
dar 17 o o0l W 2
— E — JCB gotolpA) C — A*B
— o4
4 -—>e*a B — ‘4 g@fﬂ(j .Lﬂ)
N\
goto(lp.a) | Stare I: :gmm -IS.
4 — a° —a

Example 2: Find canonical LR (0) collection for the following grammar:
E’—E
E—-E+T|T
To>T*F|F
F—(E)]|id
Solution --------- do itself-----memem-

Homework:

1. Construct the LR(0) set of items for the following grammar (which produces simple
postfix expressions).

X—>SS+|SS*]|a
Don't forget to augment the grammar.
2. Draw the DFA for this item set.

By Bhupendra Singh Saud Page 51

Downloaded from CSIT Tutor

Constructing SLR Parsing Tables

Algorithm
1. Construct the canonical collection of sets of LR(0) items for G’.
C—{lo... In}

2. Create the parsing action table as follows
* If A—oa.ap is in I; and goto(l;,a) = Ij then set action[i , a] = shift j.
* If A—a. isin li, then set action[i,a] to” reduce A—a” for all ‘a’ in FOLLOW(A)
where A#S’.
« If S’>S. isin li, then action[i,$] = accept.
« If any conflicting actions generated by these rules, the grammar is not SLR(1).
3. Create the parsing goto table
« for all non-terminals A, if goto(li,A)=Ij then goto[i,A]=]
4. All entries not defined by (2) and (3) are errors.
5. Initial state of the parser contains S’—.S

Example 1: Construct the SLR parsing table for the grammar:
C—AB
A—a
B—a

Soln: The augmented grammar of given grammar is:

1).C’—C

2). C—AB

3). A—a

4). B—a
Step 1:- construct the canonical LR(0) collection for the grammar as,
State Io: State Iy : State I :
closure(C’—.C) closure (goto(lp, C)) closure (goto(lp, A))
C'—.C closure(C’—C.) closure(C—A.B)
C—.AB C’—C. C—AB
A—.a B—.a
State I3: State |y : State Is:
closure (goto(lp, a)) closure (goto(l, B)) closure (goto(l,, a))
closure(A—a.) closure(C—AB.) closure(B—-.a)
A—a. C—AB. B—a.

Step 2 : Construct SLR parsing table that contains both action and goto table as follows:

By Bhupendra Singh Saud Page 52

Downloaded from CSIT Tutor

State 1 State 1: State I: State I3: | | State 1. State I:
("= C C S| |C—oA4B||AdA—a*||C—o>A4AB*||B— a
C—>¢*4B B —-a
A -—>ea @
a $|C A B
0] s3 1 2
1 ac
21s5 4
31r3
4 re
5 r4
Example 2: Construct the SLR parsing table for the grammar:
1. ESE+T
2. E-T
3. T>T*F
4, T—F
5. F—(E)
6. F—id
Solution:
State ACTION GOTO
id + * () $ E F
0 s5 s4 1 3
1 s6 acc
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s5 s4 8 3
5 ré ré ré ré
6 s5 s4 3
7 s5 s4 10
8 s6 s11
9 rl s7 rl rl
10 r3 r3 r3 r3
11 r5 r5 r5 r5
By Bhupendra Singh Saud Page 53

Downloaded from CSIT Tutor

Homework:
[1]. Construct the SLR parsing table for the following grammar
X—>SS+|SS*|a

[2]. Construct the SLR parsing table for the following grammar
S’— S
S — aABe
A — Abc
A—b
B—d

LR(1) Grammars

SLR is so simple and can only represent the small group of grammar

LR(1) parsing uses look-ahead to avoid unnecessary conflicts in parsing table
LR(1) item = LR(0) item + look-ahead

LR(0) item: LR(1) item:
[A—ap] [A—asB, a]

Constructing LR(1) Parsing Tables

Computation of Closure for LR(1)Items:
1. Start with closure(l) = I (where I is a set of LR(1) items)
2. If [A—aBp, a] € closure(l) then
add the item [B—-+y, b] to I if not already in I, where b € FIRST(Ba).
3. Repeat 2 until no new items can be added.

Computation of Goto Operation for LR(1) Items:
If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then goto(l,X)
is computed as follows:
1. For each item [A—a<Xp, @] € |, add the set of items
closure({[A—aXe<p, a]}) to goto(l,X) if not already there
2. Repeat step 1 until no more items can be added to goto(l,X)

Construction of The Canonical LR(1) Collection:
Algorithm:

Augment the grammar with production S’—S

C = { closure({S’—.S,$}) } (the start stat of DFA)

repeat the followings until no more set of LR(1) items can be added to C.

for each | € C and each grammar symbol X € (NUT)
goto(l,X) # ¢ and goto(l,X) not € C then
add goto(1,X) to C

By Bhupendra Singh Saud Page 54

Downloaded from CSIT Tutor

Example: Construct canonical LR(1) collection of the grammar:

S—AaAb
S—BbBa
A—e
B—e
Its augmented grammar is:
S°—S
S—AaAb
S—BbBa
A—e
B—e
I SS—>.S.% ‘QCE_;_' I:S°—>S..$
S — .AaAb SN\
S — BbBa .$ I,; S — AaAb ${a 0],
A—..a
B—.b I;;S—>BbBa.$ D ,t0l.
IS —> AaAb S| 31 S —> AaAb 121 I S — AaAb. $
A—>.Db
I;S —>BbBa .$|- B |I;;S — BbB.a s| b_1I,;S — BbBa..$
B—..a

Constructing LR(1) Parsing Tables

SLR used the LR(0) items, that is the items used were productions with an embedded
dot, but contained no other (lookahead) information. The LR(1) items contain the same
productions with embedded dots, but add a second component, which is a terminal (or
$). This second component becomes important only when the dot is at the extreme
right. For LR(1) we do that reduction only if the input symbol is exactly the second
component of the item.

Algorithm:
1. Construct the canonical collection of sets of LR(1) items for G’.
C={lp... In}

2. Create the parsing action table as follows
* If [A—a.aP,b] in I; and goto(li,a) = Ij then action[i,a] = shift j.
« If A—a., aisin li, then action[i,a] = reduce A—a where A#S’.
« If S’—S.,$isin li, then action[i,$] = accept.
« If any conflicting actions generated by these rules, the grammar is not LR(1).

By Bhupendra Singh Saud Page 55

Downloaded from CSIT Tutor

3. Create the parsing goto table

« for all non-terminals A, if goto(li,A) = Ij then goto[i,A] =
4. All entries not defined by (2) and (3) are errors.
5. Initial state of the parser contains S’—.S, $

LR(1) Parsing Tables: Examplel

Construct LR(2) parsing table for given grammar:

S’—S
S—CC
C—cC
C—d

S°—.5, % i S°—>S.,$
S—.CC, $

C—.cC,c/d

C—.d,c/d

S—»C.C,$%
C—.cC %
C—d, $

Example 2:
Construct LR(2) parsing table for the augmented grammar,

Step 1:

1.S—S
2.S—L=R
3.S—>R

4 L—-*R
5. L—id
6.R—L

At first find the canonical collection of LR(1) items of the given augmented grammar as,

State Ig: State I, : State I, :
closure(S’—.S,$) closure (goto(lp S)) closure (goto(lp, L))

S°—.S,$ closure(S’—S., $) closure((S— L. =R, $),(R —L. ,$))

S—L=R% S°>—S.,$ S—L=R$
S—-.R$ R—L.,$
L—-*R$

L—.Id, =

R—.L$

State I5: State 14:
closure (goto(lp R)) closure(goto(lp *))
closure(S—R.,$) closure(L — * .R, =)

S—>R.,$ {L—>*R,=),(R->.L=),(L->.*R,=),(L—-.Id =)}

By Bhupendra Singh Saud

Downloaded from CSIT Tutor

Page 56

State I5:

State I :

closure (goto(lo, id))

closure(L —Id. , =)
L —Id., =

State lg:

closure (goto(ly, L))
closure(R—L., =)
R—L., =

State 111 :
Closure(goto(ls, +))

closure(goto((l,, =))
closure(S—L=.R,$)

S—L=R$

R—.L$
L—-*R$
L—.1d,$

State |y :

closure(goto((ls, R))
closure(S—L=R., $)
S—L=R.,$

State 11, :

closure(goto((lg, id))

State |17:
closure(goto((l4 R))
closure(L -*R. =)
Lo*R. ,=

State 115 :

closure(goto((ls, L))
R—L.,$

State 113

closure(goto((l11, R))

Closure(L—*.R, $) closure(L—id. , $) L—*R.,$

L-*R,$ L—id., $

R—.L,$

L—-*R,$

L—.id ,$

Step 2: Now construct LR(1) parsing table
id * = S L R
0 5 s4 2 3
1 acc
2 s6 5
3 12
4 85 s4 8 7
5 4 4
6 s12 | sll 10 9
7 13 13
8 3 5
9 rl
10 15
11 | s12 | sll 10 13
12 4
13 13
By Bhupendra Singh Saud Page 57

Downloaded from CSIT Tutor

LALR(1) Grammars

It is an intermediate grammar between the SLR and LR(1) grammar.

A typical programming language generates thousands of states for canonical LR parsers while
they generate only hundreds of states for LALR parser.

LALR(1) parser combines two or more LR(1) sets(whose core parts are same) into a single state
to reduce the table size.

Example:

li: L—id., = l12: L—id., =
L >

lL: L—id., $ L—id.,$

Constructing LALR Parsing Tables
1. Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar
C={lo,...,In}.
2. Find each core; find all sets having that same core; replace those sets having same
cores with a single set which is their union.
C={l0,...,In} then C’={J1,....Jm}where m <n
3. Create the parsing tables (action and goto tables) same as the construction of the
parsing tables of LR(1) parser.
— Note that: If J=I1 U .. U Ik since I1,..,Ik have same cores then cores of
goto(11,X),...,goto(12,X) must be same.
— So, goto(J,X)=K where K is the union of all sets of items having same cores as
goto(11,X).
4. If no conflict is introduced, the grammar is LALR(1) grammar.
(We may only introduce reduce/reduce conflicts; we cannot introduce a hift/reduce

conflict)
Example

0.8 38 [:S—>588 | S—}SSr hlliL—jw::IR,S,.-‘:m R ol
1.SsI=R| S LR$| ¥y R L= 1\
1 SR S— RS S LARSHold 15 *RS= “‘*{}:\5:“0 lgyg
L Lrg | LRI QLS Loidg=| 3 ©l
T Lo idsE| S d VoL,
Loid | oo | ESRY TN i 1
5.R->L —
By Bhupendra Singhsaud ~~ Page58

Downloaded from CSIT Tutor

Same Cores

R - - = \
IS - L=RSK LS > L RS I, and I,
R—> LS |\ ol

Lo *RS$ | \¥ L and
. N4 tol 5 dIld Il_'I
L— .1d.$% i\ 411
* o Ispy I, and I
IT- :‘:]-_ _} :R$:
Rl I; and Iy,
Slﬂ': — [...3/=
id = = S S L R

0 | s5| s4 1 | 2] 3
Grammar: _ '
1§58 1 acc no shift/reduce or
’?. S >L=R 2 6 | 15 no reduce/reduce
; LS' R 3 2 conﬁlict
s 4 | s5 | s4 g | 7
4 L —>*R S
siow [L] i S
6.R > L 6 |sl12]sll 10| 9 -

7 I'a >

8 15 | 15

9 rl

Kernel item:

This includes the initial items, S’—S and all items whose dot are not at the left end.

Non-Kernel item:

The productions of a grammar which have their dots at the left end are non-kernel items.
Example: Do itself...................

Take any one grammar then find canonical collection of LR(0) items and finally list kernel and
non-kernel items.

By Bhupendra Singh Saud Page 59

Downloaded from CSIT Tutor

Parser Generators

Introduction to Bison
Bison is a general purpose parser generator that converts a description for an LALR(1)
context-free grammar into a C program file.
v The job of the Bison parser is to group tokens into groupings according to the grammar
rules—for example, to build identifiers and operators into expressions.
v The tokens come from a function called the lexical analyzer that must supply in some
fashion (such as by writing it in C).
v' The Bison parser calls the lexical analyzer each time it wants a new token. It doesn’t
know what is “inside” the tokens.
v Typically the lexical analyzer makes the tokens by parsing characters of text, but Bison
does not depend on this.
v' The Bison parser file is C code which defines a function named yyparse which
implements that grammar. This function does not make a complete C program: you must
supply some additional functions.

yacc _
specification Yacc or Bison
— : —— Yy.tab.c
vacc.y compiler
ytabe —» C '
e - — a.ou
compiler
nput —_— output
stream a.out —> stream

Stages in Writing Bison program

1. Formally specify the grammar in a form recognized by Bison

2. Write a lexical analyzer to process input and pass tokens to the parser.
3. Write a controlling function that calls the Bison produced parser.

4. Write error-reporting routines.

Bison Specification
» A bison specification consists of four parts:
%{

C declarations
%}
Bison declarations
%%

Grammar rules
%%
Additional C codes

By Bhupendra Singh Saud Page 60

Downloaded from CSIT Tutor

Productions in Bison are of the form
Non-terminal: tokens/non-terminals {action}
| Tokens/non | terminals {action}

Bison Declaration
Tokens that are single characters can be used directly within productions, e.g. ¢+, ¢-°, ¢*°
Named tokens must be declared first in the declaration part using
%token Token Name (Upper Case Letter)
e.g %token INTEGER IDENTIFIER
%token NUM 100
— %left, %right or %nonassoc can be used instead for %token to specify the precedence &
associativity (precedence declaration). All the tokens declared in a single precedence declaration
have equal precedence and nest together according to their associativity.
— %union declares the collection data types
— %type <non-terminal> declares the type of semantic values of non-terminal
— %start <non-terminal> specifies the grammar start symbol (by default the start symbol of
grammar)

Grammar Rules
v In order for Bison to parse a grammar, it must be described by a Context-Free Grammar
that is LALR (1).
v" A non-terminal in the formal grammar is represented in Bison input as an identifier, like
an identifier in C. By convention, it is in lower case, such as expr, declaration.
v" A Bison grammar rule has the following general form:
o RESULT: COMPONENTS...;
where, RESULT is the non-terminal symbol that this rule describes and COMPONENTS
are various terminal and non-terminal symbols that are put together by this rule.
For example, exp: exp '+’ exp; says that two groupings of type ‘exp’, with a ‘+’ token in
between, can be combined into a larger grouping of type ‘exp’.
v" Multiple rules for the same RESULT can be written separately or can be joined with the
vertical-bar character ‘|’ as follows:
RESULT: RULE1-COMPONENTS...
| RULE2-COMPONENTS...

v' If COMPONENTS in a rule is empty, it means that RESULT can match the empty string.
For example, here is how to define a comma-separated sequence of zero or more ‘exp’

groupings:

expseq: I* empty */
| expseql

expseql: éxp

| expseql ’,” exp

It is customary to write a comment ‘/* empty */° in each rule with no components.

By Bhupendra Singh Saud Page 61

Downloaded from CSIT Tutor

Semantic Actions:
To make program useful, it must do more than simply parsing the input, i.e., must produce some
output based on the input.
Most of the time the action is to compute semantics value of whole constructs from the semantic
values associated with various tokens and groupings.
For Example, here is a rule that says an expression can be the sum of two sub-expression,

expr: expr ‘“+” expr {$$=$1 + $3;}

The action says how to produce the semantic value of the sum expression from the value of two
sub expressions.

In bison, the default data type for all semantics is int. i.e. the parser stack is implemented as an
integer array. It can be overridden by redefining the macro YYSTYPE. A line of the form
#defines YYSTYPE double in the C declarations section of the bison grammar file.

To use multiple types in the parser stack, a “union” has to be declared that enumerates all
possible types used in the grammar.
Example:
%union{
double val;
char *str;
}
This says that there are two alternative types: double and char*.
Tokens are given specific types by a declaration of the form:
%token <val> exp

Interfacing with Flex

Bison provides a function called yyparse() and expects a function called yylex() that performs
lexical analysis. Usually this is written in lex. If not, then yylex() whould be written in the C
code area of bison itself.

If yylex() is written in flex, then bison should first be called with the -d option: bison -d
grammar.y
This creates a file grammar.tab.h that containes #defines of all the %token declarations in the
grammar. The sequence of invocation is hence:

bison -d grammar.y

flex grammar.flex

gcc -0 grammar grammar.tab.c lex.yy.c —Ifl

Practice

* Get familiar with Bison: Write a desk calculator which performs '+' and "*' on unsigned integers
1. Create a Directory: "mkdir calc"
2. Save the five files (calc.lex, calc.y, Makefile, main.cc, and heading.h) to directory
"CaIC"
3. Command Sequence: "make™; "./calc"

By Bhupendra Singh Saud Page 62

Downloaded from CSIT Tutor

4. Use input programs (or stdin) which contain expressions with integer constants and
operators + and *, then press Ctrl-D to see the result

Programming Example
/* Mini Calculator */
/* calc.lex */

5 {

#include "heading.h"
#include "tok.h"
int yyerror (char *s);
int yylineno = 1;

5}

[0-9]
{digit}+

digit
int const

o°
o°

{int const}{ yylval.int val

atoi (yytext);

return INTEGER LITERAL;

" { yylval.op val = new std::string(yytext); return PLUS;
" { yylval.op val new std::string(yytext); return MULT;
[\t]* {}
[\n { yylineno++;
{ std::cerr << "SCANNER "; yyerror (""); exit(l); }

/* Mini Calculator */
/* calc.y */
%

#include "heading.h"

int yyerror(char *s);

int yylex(void);
%}

$union{

int int val;
string* op val;
}

%start input
$token <int_val> INTEGER LITERAL
Ftype <int val> exp
Fleft PLUS
$left MULT
input: /* empty */
By Bhupendra Singh Saud Page 63

Downloaded from CSIT Tutor

}

| exp { cout << "Result: " << $1 << endl; }

4

exp: INTEGER LITERAL { $$ = $1; }
| exp PLUS exp { $$ = $1 + $3; }
| exp MULT exp { $$ = $1 * $3; }

4

o©
o°

int yyerror(string s)

{
extern int yylineno; // defined and maintained in lex.c
extern char *yytext; // defined and maintained in lex.c

cerr << "ERROR: " << s << " at symbol \"" << yytext;
cerr << "\" on line " << yylineno << endl;
exit(1l);

}

int yyerror (char *s)

{

return yyerror (string(s));

[(unit: 3]

Syntax Directed Translation
To translate a programming language construct, compiler needs to keep track of many quantities
to the grammar symbol.
There are two notations for associating semantic rules with productions, which are:
e Syntax- directed definitions and
e Translation schema.

}

Syntax-directed definition:

Syntax-Directed Definitions are high level specifications for translations. They hide many
implementation details and free the user from having to explicitly specify the order in which
translation takes place.

A syntax-directed definition is a generalization of a context-free grammar in which each
grammar symbol is associated with a set of attributes. This set of attributes for a grammar
symbol is partitioned into two subsets synthesized and inherited attributes of that grammar.

In brief,

A syntax-directed definition is a grammar together with semantic rules associated with the
productions. These rules are used to compute attribute values.

Mathematically,

By Bhupendra Singh Saud Page 64

Downloaded from CSIT Tutor

Given a production
A—a
then each semantic rule is of the form
b =1f(cl,c2,...,ck)
where f is a function and ci are attributes of A and a, and either
— b is a synthesized attribute of A
— b is an inherited attribute of one of the grammar symbols in a.

Example: The syntax directed definition for a simple desk calculator

Production Semantic Rules

L — E return print(E.val)
E—-EI+T E.val = El.val + T.val
E—-T E.val = T.val
T—TI1*F T.val = Tl.val * F.val
T—F T.val = F.val
F—(E) F.val = E.val

F — digit F.val = digit.lexval

Note: all attributes in this example are of the synthesized type.

Annotated Parse Iree:
A parse tree constructing for a given input string in which each node showing the values of
attributes is called an annotated parse tree.
Example:
Let’s take a grammar,
L — E return
E—-E1+T
E—-T
T—T1*F
T—>F
F — (E)
F — digit
Now the annotated parse tree for the input string 5+3*4 is,

By Bhupendra Singh Saud Page 65

Downloaded from CSIT Tutor

Output: The value. printed at the root of
tree, is the value of E.wval at the first child

1.
,f”’AXﬂlle OO0t
— Computation start from

E.val=17 return leaf node with
I associated production
_____--——_"" and cc-u‘espolndi.ng
E.val=5 -+ T.val=12 semantic rule
T.wval=5 T.wal=3 * F . wval=4
F.wval=5 F.val=3 digit.lexval=4
digit.lexval=5 digit.lexwval=3

Inherited and Synthesized Attributes:
A node in which attributes are derived from the parent or siblings of the node is called inherited
attribute of that node.

The attributes of a node that are derived from its children nodes are called synthesized attributes.

Terminals do not have inherited attributes. A non-terminal ‘A’ can have both inherited and
synthesized attributes. The difference is how they are computed by rules associated with a
production at a node N of the parse tree.

Example: i i
TSET Production Semantic Rules Type
T—T*F T—-FT T'lval = F.val Inherited
TF T.val = T'.tval Synthesized
F — num T —*FT, | T.lval = T"lval * F.val | Inherited
T'.tval = T';.tval Synthesized
T —e¢ T'.tval = T'.lval Synthesized
F — num F.val = num.lexval Synthesized
T.val=60
F.val=3 T.lval=3
T'.tval=60
T
. T'.lval=15
num.lexval=3 F.veil—i T' tval=60 \
num.lexval=5 +* Fval=4 T'.lwval=60
| T'.tval=60
num.lexval=4
By Bhupendra Singh Saud Page 66

Downloaded from CSIT Tutor

Dependency Graph-

If interdependencies among the inherited and synthesized attributes in an annotated parse
tree are specified by arrows then such a tree is called dependency graph.

In order to correctly evaluate attributes of syntax tree nodes, a dependency graph is

useful. A dependency graph is a directed
graph that contains attributes as nodes and
dependencies across attributes as edges.
Example: let’s take a grammar,

T—->FT

T—->T*F

T—F

F — num

Example 2: NUM .l '

D —TL
T — int
T — real
L —L,id
L —id

Input : real 1d1 . 1d2 . 1d3

T type = ‘real’

1'fy.'1: leal\" ld _entry

L.in = ‘real” id, enfry

|

id, .entry

S-Attributed Definitions
v A syntax-directed definition that uses synthesized attributes exclusively is called an S-
attributed definition (or S attributed grammar).
v A parse tree of an S-attributed definition is annotated by evaluating the semantic rules for
the attribute at each node in bottom-up manner.
v Yacc/Bison only support S-attributed definitions.

By Bhupendra Singh Saud Page 67

Downloaded from CSIT Tutor

Example: Bottom up evaluation of S-Attributed definition:
Let’s take a grammar:
L—En
E—-E1+T
E—-T
T—>TI1*F
T—F
F — digit
Input: 3*5+4 n

Stack val Input | Action

$ B 3*5+4nS | shaft

$3 3 *5+4nS | reduce F — digit
SF 3 *5+4nS | reduce 7 — F
ST 3 *5+4nS | shift

ST+ 3 5+4nS | shift

ST=5 |3 5 +4nS | reduce F — digit
ST=F |3 5 +4nS | reduce I - T* F
ST 15 +4nS | reduce £ — T
SE 15 +4nS | shift

SE+ 15 4nS | shift

SE+4 |15 4 nS | reduce F — digit
SE+F |15 4 nsS | reduce 7 — F
SE+T |15 4 nsS | reduce E - E+ T
SE 19 nS | shift

SEn 19 $| reducel - En
SL 19 S| accept

L-Attributed Definitions

An inherited attribute which can be evaluated in a left-to right fashion is called an L-
attributed definition.

L-attributed definitions can be evaluated using a depth-first evaluation order.
Mathematically,

A syntax-directed definition is L-attributed if each inherited attribute of Xj, 1<=j<=n on
right side of A — X1 X2 ... Xn and it depends on,

1. The attributes of the symbols X1, X2, ..., Xj-1 to the left of Xj and

2. The inherited attributes of A.

Every S-attributed definition is L-attributed; the restrictions only apply to the inherited attributes
(not to synthesized attributes).
Example:

By Bhupendra Singh Saud Page 68

Downloaded from CSIT Tutor

A->XY

11‘}//&{"‘“ Xi=41
/ }1—13'\\ }:r".i:=)€s

As=T1s

Translation Schema:

A translation scheme is a context-free grammar in which:

— Attributes are associated with the grammar symbols and Semantic actions are inserted within
the right sides of productions and are enclosed between braces {}.

Example: _ _ _
A= {3 X{ Y ()

Q:- Define the syntax directed definitions with an example. How definitions are different from
translation schemas?

v In syntax directed definition each grammar symbols associated with the semantic rules
while in translation schema we use semantic actions instead of semantic rules.

Example: A simple translation schema that converts infix expression into corresponding postfix
expressions.

E—TR
R— +T { print(":"+7) } R,
R — ¢
T — id { print(id.name) }
a+b+c =» ab+c+
infix expression postfix expression

By Bhupendra Singh Saud Page 69

Downloaded from CSIT Tutor

id {print(“a”)} + {pl‘ill’[(“-‘-”]}____RH__
}i{l {print(*b")} + T {print(*+7)} R

id {print(“c”)} £

Eliminating Left Recursion from a Translation Scheme
Let us take a left recursive translation schema:
A—>AlY{Aa=9g(AlaY.y)}
A —- X {Aa=f(XXx)}
In this grammar each grammar symbol has a synthesized attribute written using their
corresponding lower case letters.
Now eliminating left recursion as,

A — XR Hint: A—>Aa|p
R — YR1
R—e
A — BA°
A —aA’| e

Now taking the new semantic actions for each symbols as follows,
iherited attribute of the new non-terminal

synthesized attribute of the new non-terminal

A—YX { .il]:f(X.X) } R { A HZR_S}rn } W!leln we_falﬁn‘i}mm the
left recursion from the

R— Y {R.mm=g(Rin,Y.y) } R, { Rsyn=R,.syn} grammar (to geta
, suitable grammar for
R—¢ { R.S}’ll =R.m } the top-down parsing)
we also have to change
semantic actions
Evaluating attributes
Evaluation of string XYY

By Bhupendra Singh Saud Page 70

Downloaded from CSIT Tutor

4.a=g(g(lXx), 1,y). 1,.y)

-~
,f"f
-
-~
-

Aa= q(f(ﬂ X), ¥,.y) Y,

/ \\, The values are computed

A.a=fAXX) accm@jng to a left
[‘ recursive gramimar

X

Q. For the following grammar:

E—-E+E|E*E|(E)|id

Annotate the grammar with syntax directed definitions using synthesized attributes. Remove left
recursion from the grammar and rewrite the attributes correspondingly.

Soln:
First part:
E — E + E {E.val = El.val + E2.val}
E — E*E {E.val = El.val * E2.val}
E — (E) {E.val = El.val}
E —id {E.val=id.lexval}
Second part:
Removing left recursion as,
E— (E)R|idR
R — +ER1|*ER1 | ¢
Now add the attributes within this non-left recursive grammar as,
E — (E) {R.in=El.val}R {E.val=R.syn}
E —id {R.in=id.lexval} R1 { E.val=R.syn }
R — +E {R1l.in=E.val+R.in}R1 {R.syn=R1.syn}
R — *E { Rl.in=E.val*R.in }R1 { R.syn=R1.syn }
R — ¢ {R.syn= Rm}

Q. For the following grammar:

E—>E+E|E-E|T

T — (E) | num

Annotate the grammar with syntax directed definitions using synthesized attributes. Remove left
recursion from the grammar and rewrite the attributes correspondingly.

Soln: do itself

By Bhupendra Singh Saud Page 71

Downloaded from CSIT Tutor

Q. For the following grammar:
E—-E+E|E*E|(E)|id
At first remove the left recursion then construct an annotated parse tree for the expression
2*(3+5) using the modified grammar.
Trace the path in which semantic attributes are evaluated.
E — E + E{E.val = El.val + E2.val}
E — E * E {E.val = El.val * E2.val}
E — (E) {E.val = El.val}
E —id {E.val=id.lexval}
Removing left recursion as,
E— (E)R|idR
R — +ER1 | *ER1 | ¢
Now add the attributes within this non-left recursive grammar as,
E — (E) {R.in=El.val}R {E.val=R.syn}
E —id {R.in=id.lexval} R1 { E.val=R.syn }
R — +E {R1l.in=E.val+R.in}R1 {R.syn=R1.syn}
R — *E { R1l.in=E.val*R.in }R1 { R.syn=R1.syn }
R — ¢ { R.syn=R.in}
Second part: An annotated parse tree for 2*(3+5) is,

By Bhupendra Singh Saud Page 72

Downloaded from CSIT Tutor

Type Checking

Compiler must check that the source program follows both the syntactic and semantic

conventions of the source language. Type checking is the process of checking the data type of

different variables.

The design of a type checker for a language is based on information about the syntactic
construct in the language, the notation of type, and the rules for assigning types to the language

constructs.
foken symiax npe symiax inrermediare intermediate
—= parser 2 checker =~ code —
Sl mee mree generator representation

Fig: Position of Type Checker

Type expressions:

The type of a language construct is denoted by a type expression.

A type expression can be:
* A basic type

a primitive data type such as integer, real, char, boolean, ...
type-error signal an error during type checking
void : no type

* A type name

a name can be used to denote a type expression.

* A type constructor applies to other type expressions.

arrays: If T is a type expression, then array(I,T) is a type expression where I
denotes index range. Ex: array(0..99, int)

products: If T1 and T2 are type expressions, then their Cartesian product
T1 X T2 is a type expression. Ex: int x int

pointers: If T is a type expression, then pointer(T) is a type expression. Ex:
pointer(int)

functions: We may treat functions in a programming language as
mapping from a domain type D to a range type R. So, the type of a
function can be denoted by the type expression D—R where D is R type
expressions. Ex: int — int represents the type of a function which takes an
int value as parameter, and its return type is also int.

By Bhupendra Singh Saud Page 73

Downloaded from CSIT Tutor

Type systems

The collection of different data types and their associated rules to assign types to
programming language constructs is known as type systems.

* Informal type system rules, for example “if both operands of addition are of type integer,
then the result is of type integer”
* A type checker implements type system

Example Type Checking of Expressions
E—id { E.type = lookup(id.entry) }

E — charliteral { E.type = char }

E — intliteral { E.type = int }

E—EI1+E2 { E.type = (E1.type == E2.type) ? El.type : type_error }

E — E1[E2] { E.type = (E2.type == int and E1.type == array(s,t)) ? t : type_error }
E—EI1? { E.type = (E1.type == pointer(t)) ? t : type_error }

S—id=E {S.type = (id.type == E.type) ? void : type_error}

Note: the type of id is determined by : id.type = lookup(id.entry)
S — if E then S1 {S.type = (E.type == boolean) ? S1.type : type_error}
S — while E do 51 {S.type = (E.type == boolean) ? S1.type : type_error}

§—51;52 {S.type = (S1.type == void and S2.type == void) ? void : type_error}

Static versus Dynamic type Checking

Static checking: The type checking at the compilation time is known as static checking.

Typically syntactical errors and misplacement of data type take place at this stage.
- Program properties that can be checked at compile time known as static checking.

- Typical examples of static checking are:

By Bhupendra Singh Saud Page 74

Downloaded from CSIT Tutor

* Type checks

* Flow-of-control checks
* Uniqueness checks

* Name-related checks

Dynamic type checking: The type checking at the run time is known as static checking.

Compiler generates verification code to enforce programming language’s dynamic

semantics.

* A programming language is strongly-typed, if every program its compiler accepts
will execute without type errors.

* In practice, some of types checking operations are done at run-time (so, most of the
programming languages are not strongly-typed).

* Example: int x[100]; ... x[i] >most of the compilers cannot guarantee that i will be
between 0 and 99

Type Conversion and Coercion

Type conversion

The process of converting data from one type to another type is known as type
conversion. Often if different parts of an expression are of different types then type
conversion is required.

For example, in the expression: z = x + y what is the type of z if x is integer and y is real?
Compiler have to convert one of them to ensure that both operand of same type!

In many language Type conversion is explicit, for example using type casts i.e. must be
specify as inttoreal(x)

Coercion

The process of converting one type to another by compiler itself is known as coercion.
Type conversion which happens implicitly is called coercion. Implicit type conversions
are carried out by the compiler recognizing a type incompatibility and running a type
conversion routine (for example, something like inttoreal (int)) that takes a value of the
original type and returns a value of the required type.

Mathematically the hierarchy on the right is a partially order set in which each
pair of elements has a least upper bound. For many binary operators (all the arithmetic
ones we are considering, but not exponentiation) the two operands are converted to the
LUB. So adding a short to a char, requires both to be converted to an int. adding a byte

By Bhupendra Singh Saud Page 75

Downloaded from CSIT Tutor

to a float, requires the byte to be converted to a float (the float remains a float and is not

converted). doubl
ouble

|
float

long

int
short char

|
byte

Intermediate Code Generation

The front end translates the source program into an intermediate representation from
which the backend generates target code. Intermediate codes are machine independent
codes, but they are close to machine instructions.

| IntermediateJ Target
" Front end > Back end =

| code | machine cod

Intermediate Representations

There are three kinds of intermediate representations:
1. Graphical representations (e.g. Syntax tree or Dag)
2. Postfix notation: operations on values stored on operand stack (similar to JVM byte code)

3. Three-address code: (e.g. triples and quads) Sequence of statement of the form x =y op z

Syntax tree:

Syntax tree is a graphic representation of given source program and it is also called
variant of parse tree. A tree in which each leaf represents an operand and each interior
node represents an operator is called syntax tree.

By Bhupendra Singh Saud Page 76

Downloaded from CSIT Tutor

Example: Syntax tree for the expression a*(b + c)/d

N
/\
/N

Directed acyclic graph (DAG)

A DAG for an expression identifies the common sub expressions in the expression. It is similar
to syntax tree, only difference is that a node in a DAG representing a common sub expression
has more than one parent, but in syntax tree the common sub expression would be represented

as a duplicate sub tree.

Example: DAG for the expressiona+a*(b-c)+(b-c)*d
+
+/ *
< / \ |
a -

Postfix notation

The representation of an expression in operators followed by operands is called postfix notation
of that expression. In general if x and y be any two postfix expressions and OP is a binary
operator then the result of applying OP to the x and y in postfix notation by “x y OP”.

By Bhupendra Singh Saud Page 77

Downloaded from CSIT Tutor

Examples:

1. (a+b) * cin postfix notationis: ab+c*
2. a*(b+ c)in postfix notationis:abc +*

Three Address Code:

The address code that uses three addresses, two for operands and one for result is called three
code. Each instruction in three address code can be described as a 4-tuple: (operator, operandl,
operand?, result).

A quadruple (Three address code) is of the form:

X=yopz

Where x, y and z are names, constants or compiler-generated temporaries and op is any
operator.

We use the term “three-address code” because each statement usually contains three addresses
(two for operands, one for the result). Thus the source language like x + y * z might be
translated into a sequence

tl=y*z
t2 = x + t1 where t1 and 2 are the compiler generated temporary name.

Assignment statements: x =y op z, op is binary
Assignment statements: x = op y, op is unary
Indexed assignments: x = y[i], x[i] = y

Pointer assignments: x = &y, x = *y, *x =y
Copy statements: x =y

Unconditional jumps: goto label

Conditional jumps: if x relop y goto label

L S . I I R

Function calls: param x... call p, n return y
Example: Three address code for expression: (B+A)*(Y-(B+A))

t1=B+A
t2=Y-tl
t3=11*1t2
Example 2: Three address code for expression:
i=2%n+k
While i do
i=i-k

By Bhupendra Singh Saud Page 78

Downloaded from CSIT Tutor

Solution:

t1=2
t2=1t1*n
t3=12+k
i=t3
L1:ifi= 0 goto L2
td=1i-k
i=t4
goto L1
L2:

Naming conventions for three address code

*

*

*

S.code —three-address code for evaluating S
S.begin — label to start of S or nil

S.after —label to end of S or nil

E.code — three-address code for evaluating E

E.place — a name that holds the value of E

-

_

o represent three address statement\

Gen (E. place ‘=" El.place ‘+’ E2.place)

Code generation t3=t1+t2 j

Syntax-Directed Translation into Three-Address Code

1. Assignment statements

Productions Semantic rules
S—id=E S.code = E.code | | gen (id.place ‘=" E.place); S.begin = S.after = nil
E—E1+E2 E.place = newtemp();

E.code = El.code | | E2.code | | gen (E.place ‘=" El.place ‘+" E2.place)
E—E1*E2 E.place = newtemp();

E.code = El.code | | E2.code | | gen (E.place ‘=" El.place **" E2.place)
E—-El E.place = newtemp();
By Bhupendra Singh Saud Page 79

Downloaded from CSIT Tutor

E.code = El.code | | gen (E.place ‘=" ‘minus’ El.place)

E— (E1) E.place = El.place
E.code = El.code
E—id E .place = id.name

E.code =null
E - num E.place = newtemp();
E.code = gen(E.place ‘=" num.value)

2. Boolean Expressions

Boolean expressions are used to compute logical values. They are logically used as
conditional expressions in statements that alter the flow of control, such as if — then, if —
the —else or while---do statements.
Control-Flow Translation of Boolean Expressions

Production Semantic Rules

Bi.true = B.true
B,.false = newlabel()
B — B; || Bz B,.true = B.true
B,.false = B.false
B.code = Bj.code || label(B1.false) || B,.code

Bi.true = newlabel()
B,.false = B.false
B — B; && B; Bo.true = B.true
B,.false = B.false
B.code = B;.code || label(B1.true) || B,.code

B;.true = B.false
B—-!B; B,.false = B.true
B.code = B;.code

B.code = E;.code || E>.code
B — E; relop E; || gen(if E;.addr relop.lexeme E,.addr goto B.true)
|| gen(goto B.false)

B — true B.code = gen(goto B.true)
B — false B.code = gen(goto B.false)
By Bhupendra Singh Saud Page 80

Downloaded from CSIT Tutor

3. Flow of control statements

Control statements are ‘if —then’, ‘if —then —else’, and ‘while---do’. Control statements are

generated by the following grammars:

S — If exp then S1
S — If exp then S1 else S2
S — while exp do S1
Production Semantic Rules
B.true = newlabel()
S if(B)S, B.false = S.next

S —if(B)S;else S,

S — while (B) S;

Si.next = S.next
S.code = B.code || label(B.true) || S1.code

B.true = newlabel()
B.false = newlabel()
Si.next = S.next
S,.next = S.next

S.code = B.code || label(B.true) || S1.code
|| gen(goto S.next) || label(B.false) || S,.code

begin = newlabel()
B.true = newlabel()
B.false = S.next
Si.next = begin

S.code = label(begin) || B.code || label(B.true) || S;.code || gen(goto begin)

B.code |

= 10 B.true
=» {0 B.false

5 code T to Bitrue begin : B.code:|_-: to Btrue
=1 to B false to B.false

Brue: fs1 code Btrue: [c1 codel '
S1.code BITUe: o1 code
B false : r—
goto 5.next e
B.false : e
Fig: If--then 52.code B false :l |
S.next:
Fig: If —then—else Fig: while---do
By Bhupendra Singh Saud Page 81

Downloaded from CSIT Tutor

Example: Generate three address code for the expression
if(x<5 || (x>10&56&Ex==y))x=3;
Solution:
L1:if x <5 goto L2
goto L3
Ls: if x > 10 goto Ly
goto L1
Ly: if x ==y goto L»
goto L1
Laxx=3

4. Switch/ case statements

Code for evaluating E

A switch statement is composed of two

goto L
components: an expression E, which is used to
select a particular case from the list of cases; and a £l Code for S1
case list, which is a list of n number of cases, each goto Next

of which corresponds to one of the possible values
L2 : Code for S2

of the expression E, perhaps including a default

value goto Next
Switch (E) golo Next
{ |
: Code for § ‘
Case V1: 51 St ye o
Case V2: 52 goto Next

Ld : Code for default

Case V,: 5, goto Next
} L:ifvl =1rl goto L/

if v2=1¢1 goto L2

if Vn = 11 goto Ln
goto Ld

Fig: A switch / case three address translation

Example: Convert the following switch statement into three address code:
Switch (i +)
{

Casel: x=y +z

By Bhupendra Singh Saud Page 82

Downloaded from CSIT Tutor

Case 2: u=v+w
Case3: p=q*w
Default: s=u / v

}

Solution:

L1: t1=i+]j

L2: goto(L15)

L3: 2= y+z

L4: x=t2

L5: goto(L19)

Lé: t3=v+w

L7: u=t3

L8: goto (L19)

L9: td4=q*w

L10: p=t4

L11: goto (L19)

L12:t5=u/v

L13: s=t5

L14: goto(L19)

L15: if t1=1 goto(L3)

L16: if t1=2 goto(L6)

L17: if t1=3 goto(L9)

L18: goto(L12)

L19: Next

Addressing array elements:

Elements of an array can be accessed quickly if the elements are stored in a block of
consecutive locations. If the width of each array element is w, then the ith element of

array ‘A’ begins in location,

base + (i - low)* w

Where low is the lower bound on the subscript and base is the relative address of the
storage allocated for the array. That is base is the relative address of A[low].
The given expression can be partially evaluated at compile time if it is rewritten as,
i*w + (base - low* w)
=i*w+C

Where C=base - low*w can be evaluated when the declaration of the array is seen.

By Bhupendra Singh Saud Page 83

Downloaded from CSIT Tutor

We assume that C is saved in the symbol table entry for A, so the relative address of
Ali] is obtained by simply adding i * w to C.

e Afli]=i*w+C

A : array [10. .20] of integer;
[| [| |
base T Pl —
low z width of array element: w

Ali] = base a + (i-low) *w

=i*w+c where c = base a - low * w with low =10, w =4

Example: address of 15t element of array is calculated as below,
Suppose base address of array is 100 and type of array is integer of size 4 bytes and
lower bound of array is 10 then,
A[15]=15*4 + (100 - 10 * 4)

=60 + 60

=120
Similarly for two dimensional array, we assume that array implements by using row
major form, the relative address of A[i1, i2] can be calculated by the formula,

Ali1iz]=basea + ((i1 - low1) * n2 + iz - lowz) * w
Where low1, low: are the lower bounds on the values i1 and iz, n2 is the number of
values that i> can take. Also given expression can be rewrite as,
= ((i1 * n2) + i2) * w + basea - ((low1 * n2) + low2) * w

=((l1*m) +i2)*w+C where C= basea - ((low1 * nz) + lowz) * w

Example: Let A be a 10 X 20 array, there are 4 bytes per word, assume lowl=low2=1.
Solution: Let X=A[Y, Z]
Now using formula for two dimensional array as,
((i1 * n2) + 12) * w + basea - ((low1 * n2) + low2) * w
=((Y*20)+Z)*4 +basea-((1*20)+1)*4
=((Y*20)+Z)*4 +basea- ((1*20)+1)*4
=((Y*20) + Z) * 4 + basea - 84
We can convert the above expression in three address codes as below:
T1=Y *20
T1=T1+Z
T2=T1*4

By Bhupendra Singh Saud Page 84

Downloaded from CSIT Tutor

T3=basea -84
T4=T2+ T3
X=T4

5. Declarative statements

We can explain the declarative statement by using the following example,

S—D {offset=0}

D—id:T {enter-to-symbol-table(id.name, T.type, offset);
(offset= offset+T.width)}

T— integer {T.type=Integer; T.width=4}

T— real {T.type=real; T.width=8}

T—array [num] of Ty {T.type=array (num.val, T1.type)
T.width=num.val * T1.width}

T—1T1 { T.type=pointer(T1.type); T.width=4}

* Initially offset is set to zero. As each new name is seen, that name is entered in the symbols
table with offset equal to the current value of offset and offset is incremented by the width of
the data object denoted by that name.

* The procedure enter-to-symbol-table (name, type, offset) creates a symbol table entry for
name, gives it type and relative address offset in its data area.

* Integers have width 4 and reals have width 8. The width of an array is obtained by
multiplying the width of each element by the number of elements in the array.

* The width of each pointer is assumed to be 4.

6. Procedure Calls

The procedure is such an important and frequently used programming construct that is

imperative for a compiler to generate good code for procedure calls and returns. Consider a
grammar for a simple procedure call statement:

S — call id (Elist)

Elist — Elist

Elist —» E
When procedure call occurs, space must be allocated for the activation record of the called
procedure. The argument of the called procedure must be evaluated and made available to the
called procedure in a known place. The return address is usually location of the instruction that
follows the call in the calling procedure. Finally a jump to the beginning of the code for the
called procedure must be generated.

By Bhupendra Singh Saud Page 85

Downloaded from CSIT Tutor

7. Back patching
If we decide to generate the three address code for given syntax directed definition using single
pass only, then the main problem that occurs is the decision of addresses of the labels. ‘goto’
statements refer these label statements and in one pass it becomes difficult to know the location
of these label statements. The idea to back-patching is to leave the label unspecified and fill it
later, when we know what it will be.

If we use two passes instead of one pass then in one pass we can leave these addresses

unspecified and in second pass this incomplete information can be filled up.

Exercise: Generate three address codes for the following statements:
While (a<c and b<d)

{
If(a==1) then
c=c+1
else
while (a<=d)
a=a+3

Unit -4 [Chapter-2]

Code Generation and optimization

The process of transform intermediate code + tables into final machine (or assembly)
code is known as code generation. The process of eliminating unnecessary and
inefficient code such as dead code, code duplication etc from the intermediate
representation of source code is known as code optimization. Code generation +

Optimization are the back end of the compiler.

Source
Intermediate
Program ' 1
Front code ; Code 1 Code Target
EEE—— > —» S
I Optimizatio Generator Program
end L h
Fig: Place of Code generator in compilation process
By Bhupendra Singh Saud Page 86

Downloaded from CSIT Tutor

Code generator design Issues
The code generator mainly concern with:
a Input to the code generator
Target program
Target machine
Instruction selection
Register allocation (Storage allocation)

> > > > >

Choice of evaluation order

1. Input to the Code Generator

The input to the code generator is intermediate representation together with the
information in the symbol table.

2. The Target Program

The output of the code generator is target code. Typically, the target code comes in
three forms such as: absolute machine language, relocatable machine language and
assembly language.

The advantage of producing target code in absolute machine form is that it can be
placed directly at the fixed memory location and then can be executed immediately. The
benefit of such target code is that small programs can be quickly compiled.

3. The Target Machine

Implementing code generation requires thorough understanding of the target machine
architecture and its instruction set.

4. Instruction Selection

Instruction selection is important to obtain efficient code. Suppose we translate three-
address code,

MOV a, RO
= T ——
a=a+l ADD #1,R0

MOV RO, a

ADD #1, a INC a
Most efficient

By Bhupendra Singh Saud Page 87

Downloaded from CSIT Tutor

5. Register Allocation
Since registers are the fastest memory in the computer, the ideal solution is to store all values in
registers. However, there are normally not nearly enough registers for this to be possible. So we
must choose which values are in the registers at any given time.
Actually this problem has two parts.

1. Which values should be stored in registers?

2. Which register should each selected value be stored in

The reason for the second problem is that often there are register requirements, e.g., floating-
point values in floating-point registers and certain requirements for even-odd register pairs for
multiplication/division.

Example
t:=a*b MOV a, R1
t:=t+a ———_ MULDb, R1
t:=t/d ADD a, R1
DIV d, R1
ﬂ MOV R1, t

MOV a, RO

MOV RO, R1

MUL b, R1

ADD RO, R1

DIV d, R1

MOV R1, t

6. Evaluation Order

When instructions are independent, their evaluation order can be changed. Sometimes
better code results if the three address codes are reordered.

] b MOV a, RO
tl:=a+
a+b- (c+d) *e ——— T ADD b, RO
ey = MOV RO, t1
t4:=t1-t3 MOV ¢, RI
MOV < RO ADD d, R1
< Reorder MOV e, RO
ADD d, RO
MUL R1, RO
MOV e R 2:=c+d MOV t1, R1
MUL RO, R1 te:=c :
MOV a. RO t3:=e*t2 SUB RO, R1
’ e —— .
ADD b, RO tl:=a+b MOV R1, t4
SUB R1, RO td:=t1-t3
MOV RO, t4
By Bhupendra SinghSaud ~ Pagess

Downloaded from CSIT Tutor

Basic Blocks
A basic block is a sequence of consecutive instructions in which flow of control enters by

one entry point and exit to another point without halt or branching except at the end.

Example:
MOV, RO MOV 1, RO
ADD n, RO ADDn, RO
MOV 2, R1 MOV 2, R1
MUL RO, R1 MUL RO, R1
]MP L2 —] MP L2
L1: MUL2, RO
SUB 1, R1 L1: MUL 2, RO
L2: MUL3,R1 SUB 1, R1
JMPNZ R1, L1
L2: MUL 3, R1
JMPNZ R1, L1
Flow Graphs

A flow graph is a graphical depiction of a sequence of instructions with control flow
edges. A flow graph can be defined at the intermediate code level or target code level.
The nodes of flow graphs are the basic blocks and flow-of-control to immediately follow
node connected by directed arrow.

Simply, if flow of control occurs in basic blocks of given sequence of instructions then
such group of blocks is known as flow graphs.

Example: MOV 1, RO
MOV, RO ADD n, RO
ADDn, RO MOV 2, R1
MOV 2, R1 MUL RO, R1
MUL RO, R1 : JMP 1.2
JMP 1.2

L1: MUL2,R0 L1: MUL 2, RO
SUB 1, R1 SUB1,R1

L2: MULS3,RI
JMPNZ RT, L1 L2: MUL 3, R1

JMPNZR1, L1

By Bhupendra Singh Saud Page 89

Downloaded from CSIT Tutor

Equivalence of basic blocks
Two basic blocks are (semantically) equivalent if they compute the same set of expressions.

b=0 a=c*a

tl=a+b

2 =c*tl b=0

a= t2 u
l}= c*a a=c*a
b=0 b=0

Transformations on Basic Blocks
The process of code optimization to improve speed or reduce code size of given
sequence of codes and convert to basic blocks by shafting and preserving the meaning
of the code is known as transformation on basic blocks. There are mainly two types of
code transformations:
Global transformations and
a Local transformations
Global transformations are performed across basic blocks whereas Local transformations
are only performed on single basic blocks. A local transformation is safe if the
transformed basic block is guaranteed to be equivalent to its original form. There are
two classes of local transformations which are:
1. Structure preserving transformations and
& Common sub-expression elimination
& Dead code elimination
& Renaming of temporary variables
& Interchange of two independent statements

2. Algebraic transformations

Common sub expression elimination

Here we eliminate sub expressions that do not impact on our resultant basic block.

tl=b*c tl=b*c
t2=a-tl : — | t2=a-tl
t3=b*c t3=1t2+1tl
t4=t2+13
By Bhupendra Singh Saud Page 90

Downloaded from CSIT Tutor

Dead code elimination

Here we remove unused expressions.

Ifa== If a==
Goto L1 Goto L1

A

b=x+y E—

L1:
L1: P=q+r
P=q+r

Renaming Temporary variables

Temporary variables that are dead at the end of a block can be safely renamed.

Let we have a statement t1=a + b where t1 is a temporary variable.

If we change this statement to t2= a + b where t2 is a new temporary variable. Then the
value of basic block is not changed and such new equivalent statement of their original

statement is called normal-form block.

Interchange of statements

Independent statements can be reordered without affecting the value of block to make

its optimal use.

tl=b+c tl=b+c
2=a-tl — 3=t1*d
t3=tl*d t2=a-tl
d=t2+13 d=t2+13

Algebraic Transformations

Change arithmetic operations to transform blocks to algebraic equivalent forms. Here

we replace expansive expressions by cheaper expressions.

tl=a-a
t1=0
t2=b+tl —————————— | 2=D
3=12%2 =
t3=12*t2
By Bhupendra Singh Saud Page 91

Downloaded from CSIT Tutor

Next use information

Next-use information is needed for dead-code elimination and register assignment (if

the name in a register is no longer needed, then the register can be assigned to some
other name).
Ifi:x=...and j:y = x + z are two statements i & j, then next-use of x atiisj.
Next-use is computed by a backward scan of a basic block and performing the
following actions on statement
LX=Yyopz

Add liveness /next-use info on x, y, and z to statement i (whatever in the symbol table)
Before going up to the previous statement (scan up):

a Set x info to “not live” and “no next use”

& Setyand z info to “live” and the next uses of y and z to i

Example:

Code generator
The code generator converts the optimized intermediate representation of a code to final code
which is normally machined dependent.

d=(a-b) + (a-c¢)

To three address code

tl=a -b _ MOV a, RO
0= a-c Final code SUB b, RO
j | —— | MOV a, R1
3=t1 + £2 SUB ¢ R1
d=13 ADD R1, RO
MOV d, RO

Register Descriptors
A register descriptor keeps track of what is currently stored in a register at a particular point in

the code, e.g. alocal variable, argument, global variable, etc.
MOV a, RO “R0 contains a”

By Bhupendra Singh Saud Page 92

Downloaded from CSIT Tutor

Address Descriptors

An address descriptor keeps track of the location where the current value of the name can be
found at run time, e.g. a register; stack location, memory address, etc.

MOV a, RO

MOV R0, R1 “ain RO and R1”

Example 1: At first convert the following expression into three address code sequence
then show the register as well as address descriptor contents.
Statement: d = (a-b) + (a-c) + (a-c¢)

Solution: The three address code sequence of above statement is:

tl=a -b
t2=a-c
t3=t1 + t2
d= t3+t2
Statements Code generated Resister descriptor Address Descriptor
tl=a -b MOV a, RO RO contains t1 t1in RO
SUB b, RO
t2=a-c . :
MOV a, R1 RO contains t1 tl in RO
SUB ¢, R1 R1 contains t2 t2in R1
RO contains t3 t3 in RO
= ADDR1, RO
t3=tl + 12 R1 contains t2 t2in R1
d= t3+12 ﬁ’/[%[\)] RdLR I({)O RO contains d d in RO and memory

Example 2: At first convert the following expression into three address code sequence
then show the register as well as address descriptor contents.
Statement: X=(a/b+c)-d*e
Solution: The three address code sequence of above statement is:
tl=a /b
t2=tl+c
t3=d *e
X=12-13

By Bhupendra Singh Saud Page 93

Downloaded from CSIT Tutor

Statements Code generated Resister descriptor Address Descriptor

tl=a /b MOV a, RO RO contains t1 t1 in RO

DIV b, RO
t2=tl+c ADD ¢, RO RO contains t2 t2in RO
t3=d * e MOV d, R1 RO contains t2 t2in RO

MUL e, R1 R1 contains t3 t3in R1
X=12-13 SUB R1, RO RO conta%ns X Xis in RO and in

R1 contains t3 memory
MOV X, RO

Code optimization

[Q]. Explain various optimization approaches (Peephole optimizations) with
suitable example for each of the approach.

Ans: The various optimization approaches are listed below:
* Redundant instruction elimination
* Flow of control optimization
* Dead code elimination
* Common sub expression elimination
* Algebraic simplification
* Use of machine idioms
* Reduction in strength
* Loop optimization

* Loop invariant optimization

Redundant instruction elimination

Consider an instruction sequence
I. MOVRO, a
II. MOV a, Ro
Here, we can delete instruction (II) only when both of them are in the same block. The

first instruction can also be deleted if live (a) = false.

By Bhupendra Singh Saud Page 94

Downloaded from CSIT Tutor

Flow of control optimization

If a== If a==
Goto 11 Goto 11
b=x+y —_

L2:
L1: F P=q+r
Gotol2
L2:
P=q+r

Use of machine idioms

If the addressing mode INC is defined then we can replace given expression into their

equivalent efficient form as below,

.................. e ceeesscetesstanans
a=a+1 INC a

Total cost=3 Total cost=2

Reduction in strength
Replace expensive arithmetic operations with corresponding cheaper expressions.

———— — "

Loop optimization

If a complex expression is used as condition to the loop then such a expression can be reduced
into smaller sub expressions outside the loop and only their final result used to the looping as a

condition check. Such an approach is called loop optimization.

t1=limit*2
—| t2=t1-10
While (i<=t2)

While (i<=limit* 2-10)

By Bhupendra Singh Saud Page 95

Downloaded from CSIT Tutor

Loop invariant optimization

A code fragment inside the loop is said to be loop invariant if its computation does not
depends on the loop. Such fragment can be removed from the loop and can be

computed before the loop execution as below,

Ee: temp =10; temp =10;
i=0; i=0;
while (i'=temp) | | — | j=temp*2;
{ while (i'=temp)

{

1++;
j=temp*2; \ i++;
\ \ \

Loop invariant

Example 1: On the following piece of code,

max = 4099;
x=max*10;
while (i!=x*5)
{
bli]=i * find(x);
c=max;
while (x<0)
max - -;
d=x*1[;
}

Identify different kinds of optimizations possible and describe them. Rewrite the code after

making optimizations.

Solution:
max = 4099;

x=max*10;
while (i!=x*5) +—— Loop optimization
{
bli]=i * find(x); «——Redundant expression
c=max;
while (x<0)
max - -; dead code
d=x*1i;

}

By Bhupendra Singh Saud Page 96

Downloaded from CSIT Tutor

Generating code from DAGs

By Bhupendra Singh Saud Page 97

Downloaded from CSIT Tutor

