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     Compiler Design and Construction 

(CSC 352) 

By 
      Bhupendra Singh Saud 

   for 
B. Sc. Computer Science & Information Technology  

 

 

Course Title: Complier Design and Construction  
Course no: CSC-352        Full Marks: 60+40  

Credit hours: 3  

Course Contents:  

 

Unit 1:              

1.1 Introduction to compiling: Compilers, Analysis of source program, the phases of 

compiler, compiler-construction tools.          4 hrs 

1.2 A Simple One-Pass Compiler: Syntax Definition, Syntax directed translation, 

Parsing, Translator for simple expression, Symbol Table, Abstract Stack Machines.  

            5 hrs 

Unit 2:             

2.1 Lexical Analysis: The role of the lexical analyzer, Input buffering, Specification of 

tokens, Recognition of tokens, Finite Automata, Conversion Regular Expression to an 

NFA and then to DFA, NFA to DFA, State minimization in DFA, Flex/lex introduction.  

                     8 Hrs 

2.2 Syntax Analysis: The role of parser, Context frees grammars, Writing a grammars, 

Top-down parsing, Bottom-up parsing, error recovery mechanism, LL grammar, 

Bottom up parsing-Handles, shift reduced parsing, LR parsers-SLR,LALR,LR,LR/LALR 

Grammars, parser generators.                   10 Hrs  

 

Unit 3:              

3.1 Syntax Directed Translation: Syntax-directed definition, Syntax tree and its 

construction, Evaluation of S-attributed definitions, L-attributed, Top-down translation, 

Recursive evaluators.                      5 Hrs 

3.2 Type Checking: Type systems, Specification of a simple type checker, Type 

conversions equivalence of type expression, Type checking Yacc/Bison.                3 Hrs 
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Unit 4:              

4.1 Intermediate Code Generation: Intermediate languages, three address code, 

Declarations, Assignments Statements, Boolean Expressions, addressing array elements, 

case statements,  Back patching, procedure calls.                                                            4 Hrs 

                               

4.2 Code Generation and optimization: Issues in design of a code generator, the target 

machine, Run –time storage management, Basic blocks and flow graphs, next use 

information‘s, a simple code generator, Peephole organization, generating code from 

dags.                                            6 Hrs 

 

 

Subject: Compiler Design and Construction  FM: 60 

Time: 3 hours          PM: 24 

Candidates are required to give their answer in their own words as for as practicable. 
Attempt all the questions. 
Every question contains equal marks. 

Year: 2068 

1. What do mean by compiler? How source program analyzed? Explain in brief. 

2. Discuss the role of symbol table in compiler design. 

3. Convert the regular expression ‗0+ (1+0)*00‘ first into NFA and then into DFA 

using Thomson‘s and Subset Construction methods. 

4. Consider the grammar: 

a. S( L )| a 

b. LL, S|S 

5. Consider the grammar 

a. C→AB 

b. A →a 

c. B→ a 

Calculate the canonical LR (0) items. 

6. Describe the inherited and synthesized attributes of grammar using an example. 

7. Write the type expressions for the following types. 

* An array of pointers to real, where the array index range from 1 to 100. 

* Function whose domains are function from characters and whose range is 

a Pointer of   integer. 

8. What do you mean by intermediate code? Explain the role of intermediate code 

in compiler design. 

Downloaded from CSIT Tutor



   

By Bhupendra Singh Saud  Page 3 
 

9. What is operation of simple code generator? Explain. 

10. Why optimization is often required in the code generated by simple code 

generator? Explain the unreachable code optimization. 

 

Prerequisites 
* Introduction to Automata and Formal Languages 

* Introduction to Analysis of Algorithms and Data Structures 

* Working knowledge of C/C++ 

* Introduction to the Principles of Programming Languages, Operating System & 

Computer     Architecture is plus 

 

 

Resources 
Text Book: Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles, 

Techniques, and Tools, Addison-Wesley, 1986 

   
 

 
 
What is Compiler? 
A compiler is a translator software program that takes its input in the form of program 
written in one particular programming language (source language) and produce the 
output in the form of program in another language (object or target language). 
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A compiler is a special type of computer program that translates a human readable text 
file into a form that the computer can more easily understand. At its most basic level, a 
computer can only understand two things, a 0 and a 1. At this level, a human will 
operate very slowly and find the information contained in the long string of 1s and 0s 
incomprehensible. A compiler is a computer program that bridges this gap. 
 

 
Phases of a Compiler 
In during compilation process program passes through various steps or phases. It also 
involves the symbol table and error handler. There are two major parts of a compiler 
Analysis and Synthesis. 

 
Analysis part 
In analysis part, an intermediate representation is created from the given source 
program. This part is also called front end of the compiler. This part consists of mainly 
following four phases: 

 Lexical Analysis 

 Syntax Analysis  

 Semantic Analysis and 

 Intermediate code generation 

 
Synthesis part 
In synthesis part, the equivalent target program is created from intermediate 
representation of the program created by analysis part. This part is also called back end 
of the compiler. This part consists of mainly following two phases: 

 Code Optimization and 

 Final Code Generation  
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           Figure: Phases of a compiler 

 
1. Lexical Analysis (or Scanning) 
Lexical analysis or scanning is the process where the source program is read from left-
to-right and grouped into tokens. Tokens are sequences of characters with a collective 
meaning. In any programming language tokens may be constants, operators, reserved 
words, punctuations etc. 
The Lexical Analyzer takes a source program as input, and produces a stream of tokens 
as output. Normally a lexical analyzer doesn‘t return a list of tokens; it returns a token 
only when the parser asks a token from it. Lexical analyzer may also perform other 
auxiliary operation like removing redundant white space, removing token separator 
(like semicolon) etc. In this phase only few limited errors can be detected such as illegal 

Input source program 
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characters within a string, unrecognized symbols etc. Other remaining errors can be 
detected in the next phase called syntax analyzer. 
 

 
Example:  

While(i>0) 

 i=i-2; 

 

Tokens  description 

while   while keyword 
(   left parenthesis 
i   identifier 
>   greater than symbol 
0   integers constant 
)   right parenthesis 
i   identifier 
=   Equals 
i   identifier 
-   Minus 
2   integers constant 
;   Semicolon 

 

The main purposes of lexical analyzer are: 

* It is used to analyze the source code. 

* Lexical analyzer is able to remove the comments and the white space present in the 

expression. 

* It is used to format the expression for easy access i.e. creates tokens. 

* It begins to fill information in SYMBOL TABLE. 
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2. Syntax Analyzer (or Parsing) 

The second phase of the compiler phases is syntax Analyzer, once lexical analysis is 

completed the generation of lexemes and mapped to the token, then parser takes over to 

check whether the sequence of tokens is grammatically correct or not, according to the 

rules that define the syntax of the source language. 

The main purposes of Syntax analyzer are: 

 Syntax analyzer is capable analyzes the tokenized code for structure. 

 This is able to tags groups with type information. 

A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the given 

source program. Syntax analyzer is also called the parser. Its job is to analyze the source 

program based on the definition of its syntax. It is responsible for creating a parse-tree 

of the source code.  

Ex: newval := oldval + 12 

 

 

The syntax of a language is specified by a context free grammar (CFG). 

The rules in a CFG are mostly recursive. 

A syntax analyzer checks whether a given program satisfies the rules implied by a CFG 

or not. 

– If it satisfies, the syntax analyzer creates a parse tree for the given program. 

 

3. Semantic Analyzer 
The next phase of the semantic analyzer is the semantic analyzer and it performs a very 

important role to check the semantics rules of the expression according to the source 

language.  The previous phase output i.e. syntactically correct expression is the input of 
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the semantic analyzer. Semantic analyzer is required when the compiler may require 

performing some additional checks such as determining the type of expressions and 

checking that all statements are correct with respect to the typing rules, that variables 

have been properly declared before they are used, that functions are called with the 

proper number of parameters etc. This semantic analyzer phase is carried out using 

information from the parse tree and the symbol table. 

The parsing phase only verifies that the program consists of tokens arranged in a 

syntactically valid combination. Now semantic analyzer checks whether they form a 

sensible set of instructions in the programming language or not. Some examples of the 

things checked in this phase are listed below: 

* The type of the right side expression of an assignment statement should match the 

type of the left side ie. in the expression newval = oldval + 12, The type of the 

expression (oldval+12) must match with type of the variable newval. 

* The parameter of a function should match the arguments of a function call in both 

number and type. 

* The variable name used in the program must be unique etc. 

 

The main purposes of Semantic analyzer are: 
 It is used to analyze the parsed code for meaning. 
 Semantic analyzer fills in assumed or missing information. 
 It tags groups with meaning information. 

 
Important techniques that are used for Semantic analyzer: 

 The specific technique used for semantic analyzer is Attribute Grammars. 
 Another technique used by the semantic analyzer is Ad hoc analyzer. 

 

 

4. Intermediate code generator 
If the program syntactically and semantically correct then intermediate code generator 
generates a simple machine independent intermediate language. The intermediate 
language should have two important properties: 

* It should be simple and easy to produce. 

* It should be easy to translate to the target program 
Some compiler may produce an explicit intermediate codes representing the source 
program. These intermediate codes are generally machine (architecture) independent. 
But the level of intermediate codes is close to the level of machine codes. 
 
Example:  A = b + c * d / f 
Solution 
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Intermediate code for above example 
T1 = c * d 
T2 = T1 / f 
T3 = b + T2 
A = T3 

The main purposes of Intermediate code generation are: 
 This phase is used to generate the intermediate code of the source code. 

 
Important techniques that are used for Intermediate code generations: 

 Intermediate code generation is done by the use of Three address code 
generation. 

 

 

Code Optimization 
Optimization is the process of transforming a piece of code to make more efficient 
(either in terms of time or space) without changing its output or side effects. The 
process of removing unnecessary part of a code is known as code optimization. Due to 
code optimization process it decreases the time and space complexity of the program. 
i.e 

Detection of redundant function calls 
Detection of loop invariants 
Common sub-expression elimination 
Dead code detection and elimination 

 

                             
The main purposes of Code optimization are: 

 It examines the object code to determine whether there are more efficient means 
of execution. 

Important techniques that are used for lexical analyzer: 
 Loop unrolling. 
 Common-sub expression elimination 
 Operator reduction etc. 
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Code Generation 
It generates the assembly code for the target CPU from an optimized intermediate 
representation of the program.  
Ex: Assume that we have an architecture with instructions whose at least one of its 
operands is a machine register. 
              A = b + c * d / f 
  
 
 

MOVE     c, R1 

MULT     d, R1 

DIV      f, R1 

ADD        b, R1 

  MOVE    R1, A 

 

One pass VS Multi-pass compiler 
Each individual unique step in compilation process is called a phase such as lexical analysis, 

syntax analysis, semantic analysis and so on. Different phases can be combined into one or more 

than one group. These each group is called passes. If all the phases are combined into a single 

group then this is called as one pass compiler otherwise more than one pass constitute the multi-

pass compiler. 

 

One pass compiler Multi-pass compiler 

1. In a one pass compiler all the phases are 

combined into one pass. 

2. Here intermediate representation of source 

program is not created. 

3. It is faster than multi-pass compiler. 

4. It is also called narrow compiler. 

5. Pascal‘s compiler is an example of one 

pass compiler. 

6. A single-pass compiler takes more 

space than the multi-pass compiler 

1. In multi-pass compiler different phases of 

compiler are grouped into multiple phases. 

2. Here intermediate representation of source 

program is created. 

3. It is slightly slower than one pass compiler. 

4. It is also called wide compiler. 

5. C++ compiler is an example of multi-pass 

compiler. 

6. A multi-pass compiler takes less space 

than the multi-pass compiler because in 

multi-pass compiler the space used by 

the compiler during one pass can be 

reused by the subsequent pass. 
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Compiler Construction Tools 
 For the construction of a compiler, the compiler writer uses different types of software 
tools that are known as compiler construction tools. These tools make use of 
specialized languages for specifying and implementing specific components, and most 
of them use sophisticated algorithms. The tools should hide the details of the algorithm 
used and produce component in such a way that they can be easily integrated into the 
rest of the compiler. Some of the most commonly used compiler construction tools are: 
 

* Scanner generators: They automatically produce lexical analyzers or scanners. 

Example: flex, lex, etc 

* Parser generators: They produce syntax analyzers or parsers. Example: bison, yacc 
etc. 

* Syntax-directed translation engines: They produce a collection of routines, which 
traverses the parse tree and generates the intermediate code. 

* Code generators: They produce a code generator from a set of rules that translates 
the intermediate language instructions into the equivalent machine language 
instructions for the target machine. 

* Data-flow analysis engines: They gather the information about how the data is 
transmitted from one part of the program to another. For code optimization, data-
flow analysis is a key part. 

* Compiler-construction toolkits: They provide an integrated set of routines for 
construction of the different phases of a compiler. 

 

 
Symbol Tables 
Symbol tables are data structures that are used by compilers to hold information about 
source-program constructs. The information is collected incrementally by the analysis 
phase of a compiler and used by the synthesis phases to generate the target code.  
Entries in the symbol table contain information about an identifier such as its type, its 
position in storage, and any other relevant information. Symbol tables typically need to 
support multiple declarations of the same identifier within a program. 
The lexical analyzer can create a symbol table entry and can return token to the parser, 
say id, along with a pointer to the lexeme. Then the parser can decide whether to use a 
previously created symbol table or create new one for the identifier. 
 
The basic operations defined on a symbol table include 

 allocate – to allocate a new empty symbol table 

 free – to remove all entries and free the storage of a symbol table 

 insert – to insert a name in a symbol table and return a pointer to its entry 

 lookup – to search for a name and return a pointer to its entry 

 set_attribute – to associate an attribute with a given entry 

 get_attribute – to get an attribute associated with a given entry 
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Other operations can be added depending on requirement 

 For example, a delete operation removes a name previously inserted 
 
Possible entries in a symbol table: 

 Name: a string. 

 Attribute: 
 Reserved word 
 Variable name 
 Type name 
 Procedure name 
 Constant name 
 _ _ _ _ _ _ _ 

 Data type 

 Scope information: where it can be used. 

 Storage allocation, size… 

 ……………… 
 

Example: Let‘s take a portion of a program as below: 
void fun ( int A, float B)  
{ 

int D, E; 
D = 0; 
E = A / round (B); 
if (E > 5)  
{ 

Print D 
} 

} 
Its symbol table is created as below: 

Symbol Token Data type Initialization? 

Fun Id Function name No 

A Id Int Yes 

B Id Float Yes 

D Id Int No 

E Id Int No 

 

Symbol Token Data type Initialization? 

Fun Id Function name No 

A Id Int Yes 

B Id Float Yes 

D Id Int Yes 

E Id Int Yes 
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Error handling in compiler 
Error detection and reporting of errors are important functions of the compiler. 
Whenever an error is encountered during the compilation of the source program, an 
error handler is invoked. Error handler generates a suitable error reporting message 
regarding the error encountered. The error reporting message allows the programmer 
to find out the exact location of the error. Errors can be encountered at any phase of the 
compiler during compilation of the source program for several reasons such as: 
 

* In lexical analysis phase, errors can occur due to misspelled tokens, unrecognized 
characters, etc. These errors are mostly the typing errors. 

* In syntax analysis phase, errors can occur due to the syntactic violation of the 
language. 

* In intermediate code generation phase, errors can occur due to incompatibility of 
operands type for an operator. 

* In code optimization phase, errors can occur during the control flow analysis due to 
some unreachable statements. 

* In code generation phase, errors can occurs due to the incompatibility with the 
computer architecture during the generation of machine code. For example, a 
constant created by compiler may be too large to fit in the word of the target 
machine. 

* In symbol table, errors can occur during the bookkeeping routine, due to the 
multiple declaration of an identifier with ambiguous attributes. 

 

What is a cross compiler? 
A compiler which may run on one machine and produce the target code for another 
machine is known as cross compiler. For example, a number of minicomputer and 
microprocessor compilers are implemented in such a way that they run on bigger 
machines and the output produced by them acts as an object code for smaller machines. 
Thus, the cross compilation technique facilitates platform independence. It consists of 
three symbols S, T and I, where: 

* ‗S‘ is the source language in which the source program is written, 

* ‗T‘ is the target language in which the compiler produces its output or target 
program, and 

* ‗I‘ is the implementation language in which compiler is written. 
 

 

Lexical Analysis 
The lexical analysis is the first phase of a compiler where a lexical analyzer acts as an 
interface between the source program and the rest of the phases of compiler. It reads the 
input characters of the source program, groups them into lexemes, and produces a 
sequence of tokens for each lexeme. The tokens are then sent to the parser for syntax 
analysis. Normally a lexical analyzer doesn‘t return a list of tokens; it returns a token 
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only when the parser asks a token from it. Lexical analyzer may also perform other 
auxiliary operation like removing redundant white space, removing token separator 

(like semicolon) etc. 

 
Example:  
newval := oldval + 12  
 tokens: newval  identifier 

    :=   assignment operator 
    oldval  identifier 
     +   add operator 
     12   a number 

Put information about identifiers into the symbol table. 
Regular expressions are used to describe tokens (lexical constructs). 
A (Deterministic) Finite State Automaton (DFA) can be used in the implementation of a 
lexical analyzer. 
 

 
Tokens, Patterns, Lexemes 
A token is a logical building block of language. They are the sequence of characters 
having a collective meaning. 
Example: identifier, keywords, integer constants, string constant etc 
 
A sequence of input characters that make up a single token is called a lexeme. 
A token can represent more than one lexeme. The token is a general class in which 
lexeme belongs to. 
Example: The token ―String constant‖ may have a number of lexemes such as ―bh‖, 
―sum‖, ―area‖, ―name‖ etc. 
Thus lexeme is the particular member of a token which is a general class of lexemes. 
 
Patterns are the rules for describing whether a given lexeme belonging to a token or not. 
Regular expressions are widely used to specify patterns. 
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Attributes of Tokens 
When a token represents more than one lexeme, lexical analyzer must provide 
additional information about the particular lexeme. This additional information is 
called as the attribute of the token. 
For simplicity, a token may have a single attribute which holds the required 
information for that token. 
Example: the tokens and the associated attribute for the following statement. 
A=B*C+2 
<id, pointer to symbol table entry for A> 
<assig operator> 
<id, pointer to symbol table entry for B> 
<mult_op> 
<id, pointer to symbol table entry for C> 
<add_op> 
<num, integer value 2> 
 

 
Input Buffering 

* Reading character by character from secondary storage is slow process and time consuming 

as well. It is necessary to look ahead several characters beyond the lexeme for a pattern 

before a match can be announced. 

* One technique is to read characters from the source program and if pattern is not matched 

then push look ahead character back to the source program. 

* This technique is time consuming.  

* Use buffer technique to eliminate this problem and increase efficiency. 

Many times, a scanner has to look ahead several characters from the current character in 

order to recognize the token. 

For example int is keyword in C, while the term inp may be a variable name. When the 

character ‘i’ is encountered, the scanner cannot decide whether it is a keyword or a 

variable name until it reads two more characters. 

In order to efficiently move back and forth in the input stream, input buffering is used. 

 

   Fig: - An input buffer in two halves 

Here, we divide the buffer into two halves with N-characters each. 
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Rather than reading character by character from file we read N input character at once. 

If there are fewer than N characters in input eof marker is placed. 

There are two pointers (see in above fig.) the portion between lexeme pointer and 
forward pointer is current lexeme. Once the match for pattern is found, both the 
pointers points at the same place and forward pointer is moved. 
The forward pointer performs tasks like below: 
 If forward at end of first half then, 
  Reload second half 
  Forward++ 
 end if 
 else if forward at end of second half then, 
  Reload first half  
  Forward=start of first half 
 end else if 
 else 
  forward++ 
  
 

Recognition of tokens 

To recognize tokens lexical analyzer performs following steps: 

a. Lexical analyzers store the input in input buffer. 

b. The token is read from input buffer and regular expressions are built for 

corresponding token 

c. From these regular expressions finite automata is built. Usually NFA is built. 

d. For each state of NFA, a function is designed and each input along the transitional 

edges corresponds to input parameters of these functions. 

e. The set of such functions ultimately create lexical analyzer program. 

 

Regular Expressions 

Regular expressions are the algebraic expressions that are used to describe tokens of a 

programming language. 

Examples 

Given the alphabet A = {0, 1} 

1. 1(1+0)*0 denotes the language of all string that begins with a ‗1‘ and ends with a ‗0‘. 

2. (1+0)*00 denotes the language of all strings that ends with 00 (binary number 

multiple of 4) 

3. (01)*+ (10)* denotes the set of all stings that describe alternating 1s and 0s 

4. (0* 1 0* 1 0* 1 0*) denotes the string having exactly three 1‘s. 

Downloaded from CSIT Tutor



   

By Bhupendra Singh Saud  Page 17 
 

5. 1*(0+ ε)1*(0+ ε) 1* denotes the string having at most two 0‘s  

6. (A | B | C |………| Z | a | b | c |………| z | _ |). ((A | B | C |………| Z | a 

| b | c |………| z | _ |) (1 | 2 |…………….| 9))* denotes the regular expression 

to specify the identifier like in C. [TU] 

7. (1+0)* 001 (1+0)* denotes string having substring 001 

 

 

Regular Definitions 

To write regular expression for some languages can be difficult, because their regular 

expressions can be quite complex. In those cases, we may use regular definitions. 

The regular definition is a sequence of definitions of the form, 

 d1 → r1 

d2 → r2  

……………. 

dn → rn 

Where di is a distinct name and ri is a regular expression over symbols in Σ∪  {d1, d2... 

di-1} 

Where, Σ = Basic symbol and  

 {d1, d2... di-1} = previously defined names. 

 

Regular Definitions: Examples 

Regular definition for specifying identifiers in a programming language like C  

 letter → A | B | C |………| Z | a | b | c |………| z 

 underscore →‘_‘ 

 digit →0 | 1 | 2 |…………….| 9 

 id → (letter | underscore).( letter | underscore | digit)* 

If we are trying to write the regular expression representing identifiers without using 

regular definition, it will be complex. 

(A | B | C |………| Z | a | b | c |………| z | _ |). ((A | B | C |………| Z | a | b | c 

|………| z | _ |) (1 | 2 |…………….| 9))* 
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Exercise 

Write regular definition for specifying floating point number in a programming 

language like C 

Soln: digit →0 | 1 | 2 |…………….| 9 

 fnum→ digit * (.digit+) 

 
Write regular definitions for specifying an integer array declaration in language like C 
Soln: letter → A | B | C |………| Z | a | b | c |………| z 
 underscore →‘_‘ 
 digit → 1 | 2 |…………….| 9 

 array → (letter | underscore).( letter | underscore | digit)* ([digit+.0*])+ 

 
Design of a Lexical Analyzer 
First, we define regular expressions for tokens; then we convert them into a DFA to get a lexical 

analyzer for our tokens. 

Algorithm1: 

Regular Expression → NFA → DFA (two steps: first to NFA, then to DFA) 

Algorithm2: 

Regular Expression → DFA (directly convert a regular expression into a DFA) 

 

 
 

Non-Deterministic Finite Automaton (NFA) 
An NFA is a 5-tuple (S, Σ, δ, s0, F) where 

S is a finite set of states 
Σ is a finite set of symbols 
δ is a transition function 
s0 ∈  S is the start state 
F ⊆ S is the set of accepting (or final) states 

A NFA accepts a string x, if and only if there is a path from the starting state to one of 
accepting states. 
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Fig: - NFA for regular expression (a + b)*a b b 

 
ε- NFA 
In NFA if a transition made without any input symbol is called ε-NFA. 
Here we need ε-NFA because the regular expressions are easily convertible to ε-NFA. 

   
   Fig: - ε-NFA for regular expression aa* +bb* 
 

Deterministic Finite Automaton (DFA) 
DFA is a special case of NFA. There is only difference between NFA and DFA is in the 
transition function. In NFA transition from one state to multiple states take place while 
in DFA transition from one state to only one possible next state take place. 

  
 Fig:-DFA for regular expression (a+b)*abb 

 

Conversion: Regular Expression to NFA 
Thomson’s Construction 
Thomson‘s Construction is simple and systematic method. 
It guarantees that the resulting NFA will have exactly one final state, and one start state. 
Method: 

* First parse the regular expression into sub-expressions 

* Construct NFA‘s for each of the basic symbols in regular expression (r) 

* Finally combine all NFA‘s of sub-expressions and we get required NFA of given 
regular expression. 

 
1. To recognize an empty string ε   
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2. To recognize a symbol a in the alphabet Σ 

  
3. If N (r1) and N (r2) are NFAs for regular expressions r1 and r2 
 a. For regular expression r1 + r2 

  
 b. For regular expression r1 r2 

 

 
 c. For regular expression r* 

  
Using rule 1 and 2 we construct NFA‘s for each basic symbol in the expression, we combine 

these basic NFA using rule 3 to obtain the NFA for entire expression. 

 

Example: - NFA construction of RE (a + b) * a 
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Conversion from NFA to DFA 

Subset Construction Algorithm 
Put ε-closure (s0) as an unmarked state in to Dstates 

While there is an unmarked state T in Dstates do 

mark T 
for each input symbol a ∈  Σ do 

U = ε-closure (move (T, a)) 
if U is not in Dstates then 

Add U as an unmarked state to Dstates 
end if 
Dtran[T, a] = U 

end do 
end do 
 

The algorithm produces: 

Dstates is the set of states of the new DFA consisting of sets of states of the NFA 

Dtran is the transition table of the new DFA 

 

Subset Construction Example (NFA to DFA) [(a+b)*a] 
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S0 is the start state of DFA since 0 is a member of S0= {0, 1, 2, 4, 7} 

S1 is an accepting state of DFA since 8 is a member of S1 = {1, 2, 3, 4, 6, 7, 8} 

 

 This is final DFA 

 

 
Exercise 

Convert the following regular expression first into NFA and then into DFA 

1. 0+ (1+0)*00 

2. zero 0; one 1; bit  zero + one; bits  bit* 

3. aa*+bb* 

4. (a+b)*abb 
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Conversion from RE to DFA Directly 
Important States 
A state S of an NFA without ε- transition is called the important state if, 

  
In an optimal state machine all states are important states 
 

Augmented Regular Expression 
When we construct an NFA from the regular expression then the final state of resulting 
NFA is not an important state because it has no transition. Thus to make important state 
of the accepting state of NFA we introduce an ‗augmented‘ character (#) to a regular 
expression r. 
This resulting regular expression is called the augmented regular expression of original 
expression r. 
 
Conversion steps: 
1. Augment the given regular expression by concatenating it with special symbol #  
     I.e. r (r) # 
2. Create the syntax tree for this augmented regular expression 

In this syntax tree, all alphabet symbols (plus # and the empty string) in the 
augmented regular expression will be on the leaves, and all inner nodes will be 
the operators in that augmented regular expression. 

3. Then each alphabet symbol (plus #) will be numbered (position numbers) 
4. Traverse the tree to construct functions nullable, firstpos, lastpos, and followpos 
5. Finally construct the DFA from the followpos 
 

Rules for calculating nullable, firstpos and lastpos: 
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Algorithm to evaluate followpos 
for each node n in the tree do 

if n is a cat-node with left child c1 and right child c2 then 

for each i in lastpos(c1) do 

followpos(i) := followpos(i) ∪  firstpos(c2) 
end do 

else if n is a star-node 
for each i in lastpos(n) do 

followpos(i) := followpos(i) ∪  firstpos(n) 
end do 

end if 
end do 

 
 

How to evaluate followpos: Example  

 

After we calculate follow positions, we are ready to create DFA for the regular 
expression. 
 

Conversion from RE to DFA Example1 
Note: - the start state of DFA is firstpos(root) 

the accepting states of DFA are all states containing the position of #  
Convert regular expression (a | b) * a into DFA 
Its augmented regular expression is; 

 
The syntax tree is:  
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Now we calculate followpos, 

 followpos(1)={1,2,3} 

followpos(2)={1,2,3} 

followpos(3)={4} 

followpos(4)={} 

 

 
Now   

 
Note:- Accepting states=states containing position of # ie 4. 

  
    Fig: Resulting DFA of given regular expression 

Conversion from RE to DFA 
Example2 
For RE---- (a | ε) b c* # 

         1       2 3 4 

followpos(1)={2}  

followpos(2)={3,4}    
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followpos(3)={3,4} 

 followpos(4)={} 

 

S1=firstpos(root)={1,2} 

mark S1 

  

for a: followpos(1)={2}=S2   move(S1,a)=S2   

for b: followpos(2)={3,4}=S3  move(S1,b)=S3   

mark S2 

  

for b: followpos(2)={3,4}=S3  move(S2,b)=S3 

mark S3 

 

for c: followpos(3)={3,4}=S3  move(S3,c)=S3 

 

Start state: S1 

Accepting states: {S3} 

     a, c 

          c          a,  b 

 

   Fig: - DFA for above RE 

State minimization in DFA 
Partition the set of states into two groups: 

– G1: set of accepting states 
– G2: set of non-accepting states 

For each new group G:  
– partition G into subgroups such that states s1 and s2 are in the same group if 

for all input symbols a, states s1 and s2 have transitions to states in the same group.  
Start state of the minimized DFA is the group containing the start state of the original 
DFA. 
Accepting states of the minimized DFA are the groups containing the accepting states of 
the original DFA. 

 

D 
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State Minimization in DFA 
Example1: 

 

So, the minimized DFA (with minimum states) 

                                  

Example 2: 

 
So minimized DFA is: 
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Flex: Language for Lexical Analyzer 
Systematically translate regular definitions into C source code for efficient scanning. 
Generated code is easy to integrate in C applications 

 

Flex: An introduction 

Flex is a tool for generating scanners. A scanner is a program which recognizes lexical 
patterns in text. The flex program reads the given input files, or its standard input if no 
file names are given, for a description of a scanner to generate. The description is in the 
form of pairs of regular expressions and C code, called rules. flex generates as output a 
C source file, ‗lex.yy.c‘ by default, which defines a routine yylex(). This file can be 
compiled and linked with the flex runtime library to produce an executable. When the 
executable is run, it analyzes its input for occurrences of the regular expressions. 
Whenever it finds one, it executes the corresponding C code. 

 
Flex specification: 
A flex specification consists of three parts: 
Regular definitions, C declarations in %{ %} 
%% 

Translation rules 

%% 

User-defined auxiliary procedures 

 

The translation rules are of the form: 

p1  {action1} 

p2  {action2} 

…………………..  

pn  { actionn } 

In all parts of the specification comments of the form /* comment text */ are permitted. 
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Regular definitions: 

It consist two things:‘\‘                                                                

– Any C code that is external to any function should be in %{ …….. %} 

– Declaration of simple name definitions i.e specifying regular expression e.g 

DIGIT   [0-9] 

ID   [a-z][a-z0-9]* 

The subsequent reference is as {DIGIT}, {DIGIT}+ or {DIGIT}* 

Translation rules: 

Contains a set of regular expressions and actions (C code) that are executed when the scanner 

matches the associated regular expression e.g 

{ID}   printf(―%s‖, getlogin()); 

Any code that follows a regular expression will be inserted at the appropriate place in the 

recognition procedure yylex() 

Finally the user code section is simply copied to lex.yy.c 

 

Practice 

• Get familiar with FLEX 

1. Try sample*.lex 

2. Command Sequence: 

flex sample*.lex 

gcc lex.yy.c -lfl 

./a.out 

 

Flex operators and Meaning 
x   match the character x 

\.   match the character . 

“string”  match contents of string of characters 

.   match any character except newline 

^   match 

 beginning of a line 

$   match the end of a line 

[xyz]   match one character x, y, or z (use \ to escape -) 

[^xyz]   match any character except x, y, and z 

[a-z]   match one of a to z 

r*   closure (match zero or more occurrences) 

r+   positive closure (match one or more occurrences) 

r?   optional (match zero or one occurrence) 

r1r2   match r1 then r2 (concatenation) 

r1|r2   match r1 or r2 (union) 

( r )   grouping 

r1\r2   match r1 when followed by r2 

{d}   match the regular expression defined by d 
‗r{2,5}‘  anywhere from two to five r‘s 

‗r{2,}‘   two or more r‘s 

‗r{4}‘   exactly 4 r‘s 
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Flex Global Function, Variables & Directives 
yylex() is the scanner function that can be invoked by the parser 

yytext extern char *yytext; is a global char pointer holding the currently matched lexeme. 

yyleng extern int yyleng; is a global int that contains the length of the currently matched lexeme. 

ECHO copies yytext to the scanner‘s output 

REJECT directs the scanner to proceed on to the ‖second best‖ rule which matched the input 

yymore() tells the scanner that the next time it matches a rule, the corresponding token should be       

appended onto the current value of yytext rather than replacing it. 

yyless(n) returns all but the first n characters of the current token back to the input stream, where 

they will be rescanned when the scanner looks for the next match 

unput(c) puts the character c back onto the input stream. It will be the next character scanned 

input() reads the next character from the input stream 

YY_FLUSH_BUFFER flushes the scanner‘s internal buffer so that the next time the scanner 

attempts to match a token; it will first refill the buffer. 

 

Flex Example1 

 
 

Example2 

 

/* 

* Description: Count the number of characters and the number of lines 

* from standard input 

* Usage:  

(1) $ flex sample2.lex 

* (2) $ gcc lex.yy.c -lfl 

* (3) $ ./a.out 

* stdin> whatever you like 

* stdin> Ctrl-D 

* Questions: Is it ok if we do not indent the first line? 

* What will happen if we remove the second rule? 

*/ 

int num_lines = 0, num_chars = 0; 
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%% 

\n  ++num_lines; ++num_chars; 

.  ++num_chars; 

%% 

main() 

{ 

yylex(); 

printf("# of lines = %d, # of chars = %d\n", num_lines, num_chars); 

} 

 

 
===================================================================== 

 

Syntax Analysis 

A Syntax Analyzer creates the syntactic structure (generally a parse tree) of the given source 

program. 

Syntax analyzer is also called the parser. Its job is to analyze the source program based on the 

definition of its syntax. It works in lock-step with the lexical analyzer and is responsible for 

creating a parse-tree of the source code. 

Ex: newval: = oldval + 12 

 

The syntax of a language is specified by a context free grammar (CFG). 

The rules in a CFG are mostly recursive. 

A syntax analyzer checks whether a given program satisfies the rules implied by a CFG or not. 

– If it satisfies, the syntax analyzer creates a parse tree for the given program. 
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Context-Free Grammars 

Context-free grammar is a 4-tuple G = (N, T, P, S) where 

• T is a finite set of tokens (terminal symbols) 

• N is a finite set of non-terminals 

• P is a finite set of productions of the form 

                    
Where,  

         
• S ∈  N is a designated start symbol 

 

Programming languages usually have recursive structures that can be defined by a context-free 

grammar (CFG). 

 

CFG: Notational Conventions 
Terminals are denoted by lower-case letters and symbols (single atoms) and bold strings (tokens) 

a, b,c,…  ∈T 

specific terminals:  

0, 1, id, + 

Non-terminals are denoted by lower-case italicized letters or upper-case letters symbols 

A, B, C… ∈N 

specific non-terminals:  

expr, term, stmt 

Production rules are of the form 

 , that is read as ―A can produce α‖ 

Strings comprising of both terminals and non-terminals are denoted by greek letters  

 α , β , etc 
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Left-most derivation: 
If we always choose the left-most non-terminal in each derivation step, this derivation is called 

as left-most derivation. 

Eg:- 

 
 

Right-most derivation: 
 If we always choose the right-most non-terminal in each derivation step, this derivation is called 

as right-most derivation. 

Eg: 

     
 

Parse Treese 
A parse tree is a graphic representation of a CFG with the following properties:              

 The root node is labeled by start symbol.                          

 Inner nodes of a parse tree are non-terminal symbols.   

 The leaves of a parse tree are terminal symbols. 

Eg: let us consider a CFG:  

            𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸  𝐸  −𝐸 𝑖𝑑 
Then the parse tree for –(id+id) is: 

    

  

Ambiguity of a grammar: 
 A grammar G is said to be ambiguous if there is a string w∈ L(G) for which we can 

construct more than one parse tree rooted at start symbol of the production. 

Eg: let us consider a CFG:  

            𝐸 → 𝐸 + 𝐸 𝐸 ∗ 𝐸  𝐸  −𝐸 𝑖𝑑 
The parse trees for the string id + id*id is as follows: 

            𝐸 → 𝐸 + 𝐸 → 𝐸 + 𝐸*E→ 𝑖𝑑 + 𝐸*E→ 𝑖𝑑 + 𝑖𝑑*E→ 𝑖𝑑 + 𝑖𝑑*id 
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Another possible parse tree is: 

  
Thus the above grammar is ambiguous. 

 

Parsing 
Given a stream of input tokens, parsing involves the process of reducing them to a non-

terminal. Parsing can be either top-down or bottom-up. 

Top-down parsing involves generating the string starting from the first non-terminal and 

repeatedly applying production rules. 

Bottom-up parsing involves repeatedly rewriting the input string until it ends up in the first non-

terminal of the grammar. 

 

Top-Down Parsing 
The parse tree is created top to bottom. 

Top-down parser 

– Recursive-Descent Parsing 

– Predictive Parsing 

Recursive-Descent Parsing 

• Backtracking is needed (If a choice of a production rule does not work, we backtrack to 

try other alternatives.) 

• It is a general parsing technique, but not widely used. 

• Not efficient 

It tries to find the left-most derivation 

Example: Consider the grammar, 

  𝑆 → 𝑎𝐵𝑐 
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        𝐵 → 𝑏𝑐|𝑏 
and the input string ―abc‖ parsed using Recursive-Descent parsing. 

Step 1: The first rule 𝑆 → 𝑎𝐵𝑐 to parse S 

          
 

Step 2: The next non-terminal is B and is parsed using production 𝐵 → 𝑏𝑐 as, 

          
 

Step 3: Which is false and now backtrack and use production 𝐵 → 𝑏 to parse for B 

   
 

Method: let input w = abc, initially create the tree of single node S. The left most node a match 

the first symbol of w, so advance the pointer to b and consider the next leaf B. Then expand B 

using first choice bc. There is match for b and c, and advanced to the leaf symbol c of S, but 

there is no match in input, report failure and go back to B to find another alternative b that 

produce match. 

 

Left Recursion 
A grammar is left recursive if it has a non-terminal A such that there is a derivation. 

𝐴 → 𝐴𝛼   For some string α 
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Top-down parsing techniques cannot handle left-recursive grammars. 

So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-

recursive. 

Eg: 

Immediate Left-Recursion: 
A→Aα | β 

     

           Eliminate immediate left recursion 

 

A→ βA‘ 

A‘→αA‘ | ∈  

 

In general,   

 
 

Immediate Left-Recursion - Example 

  
Non-Immediate Left-Recursion 
By just eliminating the immediate left-recursion, we may not get a grammar which is not left-

recursive. 
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Left-Factoring 
When a no terminal has two or more productions whose right-hand sides start with the 

same grammar symbols, then such a grammar is not LL(1) and cannot be used for predictive 

parsing. This grammar is called left factoring grammar. 

Eg:  

  
Hint: taking α common from the each production. 

 

Example: Eliminate left factorial from following grammar: 

 SiEiS iEiSiS a 

 Bb 

Solution: SiEiSS‟ a 

      S‟iS 

      Bb 

 

 

Predictive Parsing 
A predictive parser tries to predict which production produces the least chances of a 

backtracking and infinite looping. 

When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a 

production rule by just looking the current symbol in the input string. 

Two variants: 

– Recursive (recursive-descent parsing) 

– Non-recursive (table-driven parsing) 
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Non-Recursive Predictive Parsing 

Non-Recursive predictive parsing is a table-driven parser. 

Given an LL(1) grammar G = (N, T, P, S) construct a table M[A,a] for A ∈  N, a  ∈T and use a 

driver program with a stack. 

A table driven predictive parser has an input buffer, a stack, a parsing table and an output 

stream. 

                    
   Fig model of a non-recursive predictive parser 

Input buffer: 

It contains the string to be parsed followed by a special symbol $. 

Stack: 

A stack contains a sequence of grammar symbols with $ on the bottom. Initially it contains the 

symbol $. 

Parsing table: 

It is a two dimensional array M [A, a] where ‗A‘ is non-terminal and ‗a‘ is a terminal symbol. 

Output stream: 

A production rule representing a step of the derivation sequence of the string in the input buffer. 
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Example: Given a grammar, 

 
Input: abba 
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Constructing LL(1) Parsing Tables 
 Eliminate left recursion from grammar 

 Eliminate left factor of the grammar 

 
To compute LL (1) parsing table, at first we need to compute FIRST and FOLLW functions. 

 

Compute FIRST 
FIRST(α) is a set of the terminal symbols which occur as first symbols in strings derived from α 

where α is any string of grammar symbols. 

If α derives to ∈ , then ∈  is also in FIRST (α). 

Compute FIRST algorithm: 
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Compute FIRST: Example 

 
Compute FOLLOW: 
FOLLOW (A) is the set of the terminals which occur immediately after (follow) the non-

terminal A in the strings derived from the starting symbol. 

  
Compute FOLLOW algorithm: 

  
Compute FOLLOW: Example 

              

Constructing LL(1) Parsing Tables 
If we can always choose a production uniquely by using FIRST and FOLLOW functions 
then this is called LL(1) parsing where the first L indicates the reading direction (Left-to 
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–right) and second L indicates the derivation order (left) and 1 indicates that there is a 
one-symbol look-ahead. The grammar that can be parsed using LL(1) parsing is called 
an LL(1) grammar. 
 

 

Algorithm 

   
 

Constructing LL(1) Parsing Tables: Example1 
    E  → T E' 

    E' → + T E' | ε 

    T  → F T' 

    T' → * F T' | ε 

    F  → ( E ) | id 

   Solution:         
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Non-

terminals 

 

    

                                       Terminal Symbols 

 

+  

 

    * 

 

     ( 

 

     ) 

 

        id 

 

    $ 

E   

 

 

 

  

 

  

 

E‘ 
 

  
 

 
 

T              
 

 
 

 

T‘                  
  

 
 

 
 

 F                          

 

Constructing LL(1) Parsing Tables: Example2 
S iEtSS‘| a 

S‘ eS| ∈  

E b 

Construct LL(1) parsing table for this grammar. 

Solution: 

FIRST(S)={i, a}   FOLLOW(S)={ FIRST(S‘)}={e, $} 

FIRST(S‘)={e, ∈ }   FOLLOW(S‘)={FOLLOW(S)}={e, $} 

FIRST(E)={b}   FOLLOW(E)={FIRST(tSS‘)}={t} 

FIRST(iEtSS‘)={i}   FIRST(b)={b} 

FIRST(a)={a} 

FIRST(eS)={e} 

FIRST(∈ )={∈ }   Construct table itself. 

 
[Q] Produce the predictive parsing table for [HW] 

a. S → 0 S 1 | 0 1 
b. The prefix grammar S → + S S | * S S | a 
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LL(1) Grammars 
A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar. 

What happen when a parsing table contains multiply defined entries? 

– The problem is ambiguity 

A left recursive, not left factored and ambiguous grammar cannot be a LL(1) grammar (i.e. left 

recursive, not left factored and ambiguous grammar may have multiply –defined entries in 

parsing table) 

Properties of LL(1) Grammars 

 
Exercise: 

Q. For the grammar, 

      S [C]S|∈  

      C {A}C| ∈  

       A A( )| ∈    Construct the predictive top down parsing table (LL (1) parsing table) 

 

Conflict in LL (1): 
  When a single symbol allows several choices of production for non-terminal N then we 
say that there is a conflict on that symbol for that non-terminal. 
Example: Show that given grammar is not LL(1). 
S→aA│ bAc 

A →c │ 

Solution: 

FIRST(S)={a, b}  FIRST(A)={C, } 
FIRST(aA)={a}  FIRST(bAc)={b}  FIRST(c)={c}  FIRST()={} 
 

FOLLOW(S)={ $ } 

FOLLOW(A)={$, c } 

 a b c $ 

S S→aA S→bAc   

A   A →c 

A → 

A → 
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A conflict emerges when the parser gets c token to which it does not know the rule to apply. So 

this grammar is not LL(1). 

 

Bottom-Up Parsing 
Bottom-up parsing attempts to construct a parse tree for an input string starting from leaves (the 

bottom) and working up towards the root (the top). It is also called LR(k) parsing. 

 

Reduction: 
The process of replacing a substring by a non-terminal in bottom-up parsing is called reduction. 

It is a reverse process of production. 

Eg: S aA 

 Here, if replacing aA by S then such a grammar is called reduction. 

 

Shift-Reduce Parsing 
The process of reducing the given input string into the starting symbol is called shift-reduce 

parsing. 

 A string  the starting symbol 

          Reduced to  

 

Example: 

                   
  

 
 

Handle 
A substring that can be replaced by a non-terminal when it matches its right sentential form is 

called a handle. 

If the grammar is unambiguous, then every right-sentential form of the grammar has exactly one 

handle. 

Example 1: Let‘s take a grammar 
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    E → E + T | T 

    T → T * F | F 

    F → ( E ) | id 

 

 

 

 

 

Example 2: A Shift-Reduce Parser with Handle 

 
  

 

Stack Implementation of Shift-Reduce Parser 
The stack holds the grammar symbols and input buffer holds the string w to be parsed. 

1. Initially stack contains only the sentinel $, and input buffer contains the input string w$. 

2. While stack not equal to $S or not error and input not $ do 

(a) While there is no handle at the top of stack, do shift input buffer and push the symbol 

onto stack 

(b) If there is a handle on top of stack, then pop the handle and reduce the handle with its 

non-terminal and push it onto stack 

3. Done 

 

Parser Actions: 

1. Shift: The next input symbol is shifted onto the top of the stack. 

2. Reduce: Replace the handle on the top of the stack by the non-terminal. 

3. Accept: Successful completion of parsing. 

 4. Error: Parser discovers a syntax error, and calls an error recovery routine 

Example 1: Use the following grammar  

Right Sentential 

Form 

Handle Reducing 

Production 

id1 * id2 id1 F → id 

F * id2 F T → F 

T * id2 id2 F → id 

T * F T * F E → T * F 
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Conflicts in Shift-Reduce Parsing 
Some grammars cannot be parsed using shift-reduce parsing and result in conflicts. There are 

two kinds of shift-reduce conflicts: 

 

shift/reduce conflict:  

Here, the parser is not able to decide whether to shift or to reduce.  

Example:  

A  ab | abcd 

the stack contains $ab, and 

the input buffer contains cd$, the parser cannot decide whether to reduce $ab to $A or to shift 

two more symbols before reducing. 

 

reduce/reduce conflict:  

Here, the parser cannot decide which sentential form to use for reduction.  

For example   

A  bc 

B abc and the stack contains $abc, the parser cannot decide whether to reduce it to $aA or to 

$B. 

 

LR Parsers 
– LR parsing is most general non-backtracking, efficient and most powerful shift-reduce parsing. 

– LL(1)-Grammars LR(1)-Grammars 

– An LR-parser can detect a syntactic error so fast. 
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LR-Parsers cover wide range of grammars. 

• SLR – simple LR parser 

• LR – most general LR parser 

• LALR – intermediate LR parser (look-head LR parser) 

SLR, LR and LALR work same (they used the same algorithm), only their parsing tables are 

different. 

   

 
LR Parsers: General Structure 

  

Constructing SLR Parsing Tables 
For constructing a SLR parsing table of given grammar we need, 

To construct the canonical LR(0) collection of the grammar, which uses the ‗closure‘ operation 

and ‗goto‘ operation. 
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LR(0) Item: 
An LR(0) item of a grammar G is a production of G with a dot (.) at some position of the right 

side. 

Eg: the production  

 A aBb yields the following 4 possible LR(0) items which are: 

 A .aBb 

 A a.Bb 

 A aB.b 

 A aBb. 

 

Note: - The production A ∈  generates only one LR(0) item, A . 

 

canonical LR(0) collection: 
A collection of sets of LR(0) items is called canonical LR(0) collection. 

To construct canonical LR(0) collection for a grammar we require augmented grammar and 

closure & goto functions. 

 

Augmented grammar:  
If G is a grammar with start symbol S, then the augmented grammar G‘ of G is a grammar with a 

new start symbol S‘ and production S‘ S 

Eg: the grammar, 

 E → E + T | T 

T → T * F | F 

F → ( E ) | id 

Its augmented grammar is; 

 E‘ E 

E → E + T | T 

T → T * F | F 

F → ( E ) | id 

 

The Closure Operation: 

Say I is a set of items and one of these items is A→α·Bβ. This item represents the parser having 

seen α and records that the parser might soon see the remainder of the RHS. For that to happen 

the parser must first see a string derivable from B. Now consider any production starting with B, 

say B→γ. If the parser is to making progress on A→α·Bβ, it will need to be making progress on 

one such B→·γ. Hence we want to add all the latter productions to any state that contains the 

former. We formalize this into the notion of closure. 

Definition: 
If I is a set of LR(0) items for a grammar G, then closure(I) is the set of LR(0) items constructed 

from I by the two rules: 

1. Initially, every LR(0) item in I is added to closure(I). 

Downloaded from CSIT Tutor



   

By Bhupendra Singh Saud  Page 50 
 

2. If A → α.Bβ is in closure(I) and B→γ is a production rule of G then  add B→.γ in the 

closure(I)  repeat until no more new LR(0) items added to closure(I). 

 

The Closure Operation: Example 
Consider a grammar: 

 E → E + T | T 

T → T * F | F 

F → ( E ) | id 

Its augmented grammar is; 

 E‘ E 

E → E + T | T 

T → T * F | F 

F → ( E ) | id 

Now closure (E‘ E) contains the following items: 

 E‘ .E 

E → .E + T 

E .T 

T → .T * F 

T .F 

F →. ( E ) 

F .id 

 

The goto Operation: 
If I is a set of LR(0) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) 

is defined as follows: 

If A → α.Xβ in I then every item in closure({A → αX.β}) will be in goto(I,X). 

Example: 

I = { E‘ → .E, E → .E+T, E → .T, T → .T*F, T → .F, F → .(E), F → .id } 

goto(I,E) = closure({[E‘ → E •, E → E • + T]}) = { E‘ → E.,  E → E.+T } 

goto(I,T) = { E → T., T → T.*F } 

goto(I,F) = {T → F. } 

goto(I,( ) = closure({[F →(•E)]}) 

   = { F → (.E), E → .E+T, E → .T, T → .T*F, T → .F, F → .(E), F → .id } 

goto(I,id) = { F → id. } 

 

Construction of canonical LR(0) collection 
Algorithm: 

Augment the grammar by adding production S‘ → S 

C = { closure({S‘→.S}) } 

repeat the followings until no more set of LR(0) items can be added to C. 

for each I in C and each grammar symbol X 

if goto(I,X) is not empty and not in C 

add goto(I,X) to C 
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Example: The augmented grammar is: 

 C‘→C 

 C→AB 

 A→a 

 B→a 

I0 = closure (C‘ → •C) 

I1 = goto(I0,C) = closure(C‘ → C•) 

and so on 

 

 
 

Example 2: Find canonical LR (0) collection for the following grammar: 

  E‘ E 

E → E + T | T 

T → T * F | F 

F → ( E ) | id 

Solution ---------do itself------------ 

 

Homework: 

1. Construct the LR(0) set of items for the following grammar (which produces simple 

postfix expressions).  

X → S S + | S S * | a  

Don't forget to augment the grammar. 

2. Draw the DFA for this item set. 
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Constructing SLR Parsing Tables 

Algorithm 
1. Construct the canonical collection of sets of LR(0) items for G‘. 

C← {I0... In} 

2. Create the parsing action table as follows 

• If A→α.aβ is in Ii and goto(Ii,a) = Ij then set action[i , a] = shift j. 

• If A→α. is in Ii , then set action[i,a] to‖ reduce A→α‖ for all ‗a‘ in FOLLOW(A)  

   where A≠S‘. 

• If S‘→S. is in Ii , then action[i,$] = accept. 

• If any conflicting actions generated by these rules, the grammar is not SLR(1). 

3. Create the parsing goto table 

• for all non-terminals A, if goto(Ii,A)=Ij then goto[i,A]=j 

4. All entries not defined by (2) and (3) are errors. 

5. Initial state of the parser contains S‘→.S 

 

Example 1: Construct the SLR parsing table for the grammar: 

 C→AB 

 A→a 

 B→a 

 

Soln: The augmented grammar of given grammar is: 

 1). C‘→C 

 2). C→AB 

 3). A→a 

 4). B→a 

 

Step 1:- construct the canonical LR(0) collection for the grammar as, 

State I0:   State I1 :   State I2 : 

closure(C‘→.C)  closure (goto(I0, C))  closure (goto(I0, A)) 

C‘→.C    closure(C‘→C.)  closure(C→A.B) 

C→.AB   C‘→C.  C→A.B 

A→.a B→.a 

 

 

State I3:   State I4 :   State I5 : 

closure (goto(I0, a))  closure (goto(I2, B))  closure (goto(I2, a)) 

closure(A→a.)   closure(C→AB.) closure(B→.a) 

A→a. C→AB. B→a. 

     

Step 2 : Construct SLR parsing table that contains both action and goto table as follows: 
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Example 2: Construct the SLR parsing table for the grammar: 

1. E → E + T 

2. E → T 

3. T → T * F 

4. T → F 

5. F → ( E ) 

6. F → id 

Solution:  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

State ACTION GOTO 

id + * ( ) $ E T F 

0 s5   s4   1 2 3 

1  s6    acc    

2  r2 s7  r2 r2    

3  r4 r4  r4 r4    

4 s5   s4   8 2 3 

5  r6 r6  r6 r6    

6 s5   s4    9 3 

7 s5   s4     10 

8  s6   s11     

9  r1 s7  r1 r1    

10  r3 r3  r3 r3    

11  r5 r5  r5 r5    
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Homework: 

[1]. Construct the SLR parsing table for the following grammar  

 X → S S + | S S * | a  

 

[2]. Construct the SLR parsing table for the following grammar  

 S‘ → S  

S → aABe 

A → Abc 

A → b 

B → d 

 

 

LR(1) Grammars 
SLR is so simple and can only represent the small group of grammar 

LR(1) parsing uses look-ahead to avoid unnecessary conflicts in parsing table 

LR(1) item = LR(0) item + look-ahead 

 

LR(0) item:  LR(1) item: 

[A→α•β]  [A→α•β, a] 

 

Constructing LR(1) Parsing Tables 
Computation of Closure for LR(1)Items: 
1. Start with closure(I) = I (where I is a set of LR(1) items) 

2. If [A→α•Bβ, a] ∈  closure(I) then  

    add the item [B→•γ, b] to I if not already in I, where b ∈  FIRST(βa). 

3. Repeat 2 until no new items can be added. 

 

 

Computation of Goto Operation for LR(1) Items: 
If I is a set of LR(1) items and X is a grammar symbol (terminal or non-terminal), then goto(I,X) 

is computed as follows: 

1. For each item [A→α•Xβ, a] ∈  I, add the set of items 

     closure({[A→αX•β, a]}) to goto(I,X) if not already there 

2. Repeat step 1 until no more items can be added to goto(I,X) 

 

Construction of The Canonical LR(1) Collection: 
Algorithm: 

Augment the grammar with production S‘→S 

C = { closure({S‘→.S,$}) } (the start stat of DFA) 

repeat the followings until no more set of LR(1) items can be added to C. 

for each I ∈  C and each grammar symbol X ∈  (N∪T) 

goto(I,X) ≠ φ and goto(I,X) not ∈  C then 

add goto(I,X) to C 
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Example: Construct canonical LR(1) collection of the grammar: 

 S→AaAb 

S→BbBa 

A→∈  

B→∈  

Its augmented grammar is: 

S‘→S 

S→AaAb 

S→BbBa 

A→∈  

B→∈  

 
 

 

 
 

Constructing LR(1) Parsing Tables 
SLR used the LR(0) items, that is the items used were productions with an embedded 
dot, but contained no other (lookahead) information. The LR(1) items contain the same 
productions with embedded dots, but add a second component, which is a terminal (or 
$). This second component becomes important only when the dot is at the extreme 
right. For LR(1) we do that reduction only if the input symbol is exactly the second 
component of the item.  
 

Algorithm: 
1. Construct the canonical collection of sets of LR(1) items for G‘. 

C = {I0... In} 

2. Create the parsing action table as follows 

• If [A→α.aβ,b] in Ii and goto(Ii,a) = Ij then action[i,a] = shift j. 

• If A→α., a is in Ii, then action[i,a] = reduce A→α where A≠S‘. 

• If S‘→S.,$ is in Ii , then action[i,$] = accept. 

• If any conflicting actions generated by these rules, the grammar is not LR(1). 
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3. Create the parsing goto table 

• for all non-terminals A, if goto(Ii,A) = Ij then goto[i,A] = j 

4. All entries not defined by (2) and (3) are errors. 

5. Initial state of the parser contains S‘→.S, $ 

 

LR(1) Parsing Tables: Example1 
Construct LR(1) parsing table for given grammar: 

S‘→S 

S→CC 

C→cC 

C→d 

 

I0:  S‘→.S, $    I1: S‘→S. , $ 

S→.CC, $ 

C→.cC, c / d 

C→.d, c / d 

 

I2: S→C.C , $ 

C→.cC, $ 

C→.d,  $ 

…………………………………….up to I9  

 

Example 2:  

Construct LR(1) parsing table for the augmented grammar, 

1. S‘ → S 

2. S → L = R 

3. S → R 

4. L → * R 

5. L → id 

6. R → L 

 

Step 1: At first find the canonical collection of LR(1) items of the given augmented grammar as, 

 State I0:  State I1 :      State I2 : 
closure(S‘→.S, $) closure (goto(I0, S))     closure (goto(I0, L)) 

 S‘→.S, $  closure(S‘→S., $)     closure((S → L. = R, $),( R →L. ,$)) 

 S → .L = R, $   S‘→S. , $ S → L. = R, $    

 S → .R, $ R →L. ,$ 

L → .* R, $ 

 L →. Id, = 

R →.L,$ 

 

State I3 :    State I4 : 

closure (goto(I0, R))      closure(goto(I0, *)) 

closure(S → R. , $)   closure(L → * .R, =) 

S → R. , $    {(L → * .R, =),( R →.L,=),( L → .* R, =),( L →. Id, =)} 
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State I5 :    State I6 :   State I7 : 

closure (goto(I0, id))      closure(goto((I2, =))  closure(goto((I4, R)) 

 closure(L →Id. , =)       closure(S → L =. R, $) closure(L →* R. ,=) 

 L →Id. , =                     S → L =. R, $ L →* R.  , =      

                                                  R →.L, $ 

                                      L → .* R, $ 

                                                  L →. Id, $ 

  

State I8 :   State I9 :   State I10 : 

closure (goto(I4, L))      closure(goto((I6, R))  closure(goto((I6, L)) 

closure(R→L. , =)   closure(S→L=R. , $)  R→L. , $ 

R→L. , =    S→L=R. , $    

 

State I11 :     State I12 :   State I13 : 
Closure(goto(I6, *))    closure(goto((I6, id))  closure(goto((I11, R)) 

Closure(L→*.R, $)    closure(L→id. , $)  L→*R. , $ 

L→*.R , $     L→id. , $    

R→.L , $      

L→.*R , $ 

L→.id  , $          

 

Step 2: Now construct LR(1) parsing table  
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LALR(1) Grammars 
It is an intermediate grammar between the SLR and LR(1) grammar. 

A typical programming language generates thousands of states for canonical LR parsers while 

they generate only hundreds of states for LALR parser. 

LALR(1) parser combines two or more LR(1) sets( whose core parts are same) into a single state 

to reduce the table size. 

 

Example:  

I1:  L → id. , =                                    I12:   L → id. , = 

                                   

I2:  L → id. , $      L → id. , $ 

 

 

Constructing LALR Parsing Tables 
1. Create the canonical LR(1) collection of the sets of LR(1) items for the given grammar   

C={I0,...,In} . 

2. Find each core; find all sets having that same core; replace those sets having same 

cores with a single set which is their union. 

C={I0,...,In} then C‘={J1,...,Jm}where m ≤ n 

3. Create the parsing tables (action and goto tables) same as the construction of the 

parsing tables of LR(1) parser. 

– Note that: If J=I1 ∪  ... ∪  Ik since I1,...,Ik have same cores then cores of 

goto(I1,X),...,goto(I2,X) must be same. 

– So, goto(J,X)=K where K is the union of all sets of items having same cores as 

goto(I1,X). 

4. If no conflict is introduced, the grammar is LALR(1) grammar. 

(We may only introduce reduce/reduce conflicts; we cannot introduce a hift/reduce 

conflict) 
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Kernel item: 
This includes the initial items, S‘→S and all items whose dot are not at the left end. 

 

Non-Kernel item: 
The productions of a grammar which have their dots at the left end are non-kernel items. 

Example: Do itself………………. 

Take any one grammar then find canonical collection of LR(0) items and finally list kernel and 

non-kernel items. 
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Parser Generators 
Introduction to Bison 

Bison is a general purpose parser generator that converts a description for an LALR(1) 

context-free grammar into a C program file. 

 The job of the Bison parser is to group tokens into groupings according to the grammar 

rules—for example, to build identifiers and operators into expressions. 

 The tokens come from a function called the lexical analyzer that must supply in some 

fashion (such as by writing it in C).  

 The Bison parser calls the lexical analyzer each time it wants a new token. It doesn‘t 

know what is ―inside‖ the tokens. 

 Typically the lexical analyzer makes the tokens by parsing characters of text, but Bison 

does not depend on this. 

 The Bison parser file is C code which defines a function named yyparse which 

implements that grammar. This function does not make a complete C program: you must 

supply some additional functions. 

 

 
 

Stages in Writing Bison program 
1. Formally specify the grammar in a form recognized by Bison 

2. Write a lexical analyzer to process input and pass tokens to the parser. 

3. Write a controlling function that calls the Bison produced parser. 

4. Write error-reporting routines. 

 

Bison Specification 
• A bison specification consists of four parts: 

%{ 

C declarations 

%} 

Bison declarations 

%% 

Grammar rules 

%% 

Additional C codes 
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Productions in Bison are of the form 

Non-terminal:   tokens/non-terminals {action} 

| Tokens/non | terminals {action} 

……………………………….. 

; 

 

Bison Declaration 
Tokens that are single characters can be used directly within productions, e.g. „+‟, „-‟, „*‟ 

Named tokens must be declared first in the declaration part using 

%token Token Name (Upper Case Letter) 

e.g  %token INTEGER IDENTIFIER 

%token NUM 100 

– %left, %right or %nonassoc can be used instead for %token to specify the precedence &   

associativity (precedence declaration). All the tokens declared in a single precedence declaration 

have equal precedence and nest together according to their associativity. 

– %union declares the collection data types 

– %type <non-terminal> declares the type of semantic values of non-terminal 

– %start <non-terminal> specifies the grammar start symbol (by default the start symbol of 

grammar) 

 

Grammar Rules 
 In order for Bison to parse a grammar, it must be described by a Context-Free Grammar 

that is LALR (1). 

 A non-terminal in the formal grammar is represented in Bison input as an identifier, like 

an identifier in C. By convention, it is in lower case, such as expr, declaration. 

 A Bison grammar rule has the following general form: 

o RESULT: COMPONENTS...; 

where, RESULT is the non-terminal symbol that this rule describes and COMPONENTS 

are various terminal and non-terminal symbols that are put together by this rule. 

For example, exp: exp ’+’ exp; says that two groupings of type ‗exp‘, with a ‗+‘ token in 

between, can be combined into a larger grouping of type ‗exp‘. 

 Multiple rules for the same RESULT can be written separately or can be joined with the 

vertical-bar character ‗|‘ as follows: 

RESULT:  RULE1-COMPONENTS... 

| RULE2-COMPONENTS... 

............................................; 

 If COMPONENTS in a rule is empty, it means that RESULT can match the empty string. 

For example, here is how to define a comma-separated sequence of zero or more ‗exp‘ 

groupings: 

expseq:  /* empty */ 

| expseq1 

; 

expseq1:  exp 

| expseq1 ‘,‘ exp 

; 

It is customary to write a comment ‗/* empty */‘ in each rule with no components. 
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Semantic Actions: 
To make program useful, it must do more than simply parsing the input, i.e., must produce some 

output based on the input. 

Most of the time the action is to compute semantics value of whole constructs from the semantic 

values associated with various tokens and groupings. 

For Example, here is a rule that says an expression can be the sum of two sub-expression, 

expr:  expr ‗+‘ expr {$$ = $1 + $3;} 

; 

The action says how to produce the semantic value of the sum expression from the value of two 

sub expressions. 

 

In bison, the default data type for all semantics is int. i.e. the parser stack is implemented as an 

integer array. It can be overridden by redefining the macro YYSTYPE. A line of the form 

#defines YYSTYPE double in the C declarations section of the bison grammar file. 

 

To use multiple types in the parser stack, a ―union‖ has to be declared that enumerates all 

possible types used in the grammar. 

Example: 

%union{ 

double val; 

char *str; 

} 

This says that there are two alternative types: double and char*. 

Tokens are given specific types by a declaration of the form: 

%token <val> exp 

 

Interfacing with Flex 
Bison provides a function called yyparse() and expects a function called yylex() that performs 

lexical analysis. Usually this is written in lex. If not, then yylex() whould be written in the C 

code area of bison itself. 

 

If yylex() is written in flex, then bison should first be called with the -d option: bison -d 

grammar.y 

This creates a file grammar.tab.h that containes #defines of all the %token declarations in the 

grammar. The sequence of invocation is hence: 

bison -d grammar.y 

flex grammar.flex 

gcc -o grammar grammar.tab.c lex.yy.c –lfl 

 

 

Practice 
• Get familiar with Bison: Write a desk calculator which performs '+' and '*' on unsigned integers 

1. Create a Directory: "mkdir calc" 

2. Save the five files (calc.lex, calc.y, Makefile, main.cc, and heading.h) to directory 

"calc" 

3. Command Sequence: "make"; "./calc" 
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4. Use input programs (or stdin) which contain expressions with integer constants and 

operators + and *, then press Ctrl-D to see the result 

 

Programming Example 
/* Mini Calculator */ 

/* calc.lex */ 

%{ 

#include "heading.h" 

#include "tok.h" 

int yyerror(char *s); 

int yylineno = 1; 

%} 

 

digit  [0-9] 

int_const {digit}+ 

 

%% 

{int_const}{ yylval.int_val = atoi(yytext); return INTEGER_LITERAL; } 

"+"  { yylval.op_val = new std::string(yytext); return PLUS; } 

"*"  { yylval.op_val = new std::string(yytext); return MULT; } 

 

[\t]*  {} 

[\n]  { yylineno++; } 

 

.  { std::cerr << "SCANNER "; yyerror(""); exit(1); } 

 
%% 

--------------------------------------------------------------------------------------------------------------------- 

 
/* Mini Calculator */ 

/* calc.y */ 

%{ 

#include "heading.h" 

int yyerror(char *s); 

int yylex(void); 

%} 

 

%union{ 

     int  int_val; 

     string* op_val; 

} 

 

%start input  

%token <int_val> INTEGER_LITERAL 

%type  <int_val> exp 

%left  PLUS 

%left  MULT 

 

%% 

 

input:  /* empty */ 
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  | exp { cout << "Result: " << $1 << endl; } 

  ; 

 

exp:  INTEGER_LITERAL { $$ = $1; } 

  | exp PLUS exp { $$ = $1 + $3; } 

  | exp MULT exp { $$ = $1 * $3; } 

  ; 

 

%% 

 

int yyerror(string s) 

{ 

   extern int yylineno; // defined and maintained in lex.c 

   extern char *yytext; // defined and maintained in lex.c 

   cerr << "ERROR: " << s << " at symbol \"" << yytext; 

   cerr << "\" on line " << yylineno << endl; 

   exit(1); 

} 

 

int yyerror(char *s) 

{ 

   return yyerror(string(s)); 

} 

 

 

 

 
Syntax Directed Translation 

To translate a programming language construct, compiler needs to keep track of many quantities 

to the grammar symbol. 

There are two notations for associating semantic rules with productions, which are: 

 Syntax- directed definitions and 

 Translation schema. 

 

Syntax-directed definition: 
Syntax-Directed Definitions are high level specifications for translations. They hide many 

implementation details and free the user from having to explicitly specify the order in which 

translation takes place. 

A syntax-directed definition is a generalization of a context-free grammar in which each 

grammar symbol is associated with a set of attributes. This set of attributes for a grammar 

symbol is partitioned into two subsets synthesized and inherited attributes of that grammar. 

In brief,  

A syntax-directed definition is a grammar together with semantic rules associated with the 

productions. These rules are used to compute attribute values. 

 

Mathematically, 
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Given a production 

A → α 

then each semantic rule is of the form 

b = f(c1,c2,…,ck) 

where f is a function and ci are attributes of A and α, and either 

– b is a synthesized attribute of A 

– b is an inherited attribute of one of the grammar symbols in α. 

 

Example: The syntax directed definition for a simple desk calculator 
Production   Semantic Rules 

L → E return  print(E.val) 

E → E1 + T   E.val = E1.val + T.val 

E → T    E.val = T.val 

T → T1 * F   T.val = T1.val * F.val 

T → F    T.val = F.val 

F → ( E )   F.val = E.val 

F → digit   F.val = digit.lexval 

Note: all attributes in this example are of the synthesized type. 

 
Annotated Parse Tree: 
A parse tree constructing for a given input string in which each node showing the values of 

attributes is called an annotated parse tree. 

Example: 

 Let‘s take a grammar, 

 L → E return   

E → E1 + T   

E → T     

T → T1 * F    

T → F    

F → (E) 

F → digit 

Now the annotated parse tree for the input string 5+3*4 is, 
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Inherited and Synthesized Attributes: 
A node in which attributes are derived from the parent or siblings of the node is called inherited 

attribute of that node. 

 

The attributes of a node that are derived from its children nodes are called synthesized attributes. 

 

Terminals do not have inherited attributes. A non-terminal ‗A‘ can have both inherited and 

synthesized attributes. The difference is how they are computed by rules associated with a 

production at a node N of the parse tree. 

 

Example: 

 T → F T‘ 

 T → T * F 

   T → F 

   F → num 

 

 

 
 
 
 
 
 
 
 

Production Semantic Rules Type 

T → F T' T'.lval = F.val Inherited 

T.val = T'.tval Synthesized 

T' → * F T1' T'1.lval = T'.lval * F.val Inherited 

T'.tval = T'1.tval Synthesized 

T' → ε T'.tval = T'.lval Synthesized 

F → num F.val = num.lexval Synthesized 
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Dependency Graph: 
 If interdependencies among the inherited and synthesized attributes in an annotated parse 

tree are specified by arrows then such a tree is called dependency graph. 

In order to correctly evaluate attributes of syntax tree nodes, a dependency graph is 

useful. A dependency graph is a directed 

graph that contains attributes as nodes and 

dependencies across attributes as edges. 

Example: let‘s take a grammar, 

 T → F T  

 T → T * F 

   T → F 

   F → num 

 

 

 

 

Example 2: 

  

  
 

S-Attributed Definitions 
 A syntax-directed definition that uses synthesized attributes exclusively is called an S-

attributed definition (or S attributed grammar). 

 A parse tree of an S-attributed definition is annotated by evaluating the semantic rules for 

the attribute at each node in bottom-up manner. 

 Yacc/Bison only support S-attributed definitions. 
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Example: Bottom up evaluation of S-Attributed definition: 

Let‘s take a grammar: 

 L → E n    

E → E1 + T   

E → T     

T → T1 * F    

T → F    

F → (E) 

F → digit 

Input: 3*5+4 n  

 

L-Attributed Definitions 
An inherited attribute which can be evaluated in a left-to right fashion is called an L-

attributed definition.  

L-attributed definitions can be evaluated using a depth-first evaluation order. 

Mathematically, 

 A syntax-directed definition is L-attributed if each inherited attribute of Xj, 1<=j<=n on 

right side of A → X1 X2 … Xn and it depends on, 

1. The attributes of the symbols X1, X2, …, Xj-1 to the left of Xj and 

2.    The inherited attributes of A. 

 

Every S-attributed definition is L-attributed; the restrictions only apply to the inherited attributes 

(not to synthesized attributes). 

Example: 
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Translation Schema: 
A translation scheme is a context-free grammar in which: 

– Attributes are associated with the grammar symbols and Semantic actions are inserted within 

the right sides of productions and are enclosed between braces {}. 

Example: 

    
 

------------------------------------------------------------------------------------------------------------------ 

Q:- Define the syntax directed definitions with an example. How definitions are different from 

translation schemas? 

------------------------------------------------------------------------------------------------------------------- 

 

 In syntax directed definition each grammar symbols associated with the semantic rules 

while in translation schema we use semantic actions instead of semantic rules. 

 

Example: A simple translation schema that converts infix expression into corresponding postfix 

expressions. 
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Eliminating Left Recursion from a Translation Scheme 
Let us take a left recursive translation schema: 

A → A1 Y { A.a = g(A1.a,Y.y) } 

A → X { A.a=f(X.x) } 

In this grammar each grammar symbol has a synthesized attribute written using their 

corresponding lower case letters. 

Now eliminating left recursion as, 

A → XR   Hint:  A → A α | β 

R → YR1     

R → ε 

      A → βA‘ 

      A‘ →αA‘| ε 

 

Now taking the new semantic actions for each symbols as follows, 

 
Evaluating attributes 
Evaluation of string XYY 
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-------------------------------------------------------------------------------------------------------------------- 

Q. For the following grammar: 

E → E + E | E * E | (E) | id 

Annotate the grammar with syntax directed definitions using synthesized attributes. Remove left 

recursion from the grammar and rewrite the attributes correspondingly. 

--------------------------------------------------------------------------------------------------------------------- 

Soln: 

First part: 

 E → E + E {E.val = E1.val + E2.val} 

 E → E * E {E.val = E1.val * E2.val} 

 E → (E) {E.val = E1.val} 

 E →id {E.val=id.lexval} 

Second part:  

 Removing left recursion as, 

 E → (E)R | id R 

R → +ER1 | *ER1 | ε 
Now add the attributes within this non-left recursive grammar as, 

 E → (E) {R.in=E1.val}R {E.val=R.syn}  

E →id {R.in=id.lexval} R1 { E.val=R.syn } 

R → +E {R1.in=E.val+R.in}R1 {R.syn=R1.syn} 

R → *E { R1.in=E.val*R.in }R1 { R.syn=R1.syn } 

R → ε { R.syn=R.in} 

-------------------------------------------------------------------------------------------------------------------- 

Q. For the following grammar: 

E → E + E | E - E | T 

T → (E) | num 

Annotate the grammar with syntax directed definitions using synthesized attributes. Remove left 

recursion from the grammar and rewrite the attributes correspondingly. 

Soln: do itself 
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-------------------------------------------------------------------------------------------------------------------- 

Q. For the following grammar: 

E → E + E | E * E | (E) | id 

At first remove the left recursion then construct an annotated parse tree for the expression 

2*(3+5) using the modified grammar. 

Trace the path in which semantic attributes are evaluated. 

--------------------------------------------------------------------------------------------------------------------- 

E → E + E {E.val = E1.val + E2.val} 

 E → E * E {E.val = E1.val * E2.val} 

 E → (E) {E.val = E1.val} 

 E →id {E.val=id.lexval} 

Removing left recursion as, 

 E → (E)R | id R 

R → +ER1 | *ER1 | ε 
Now add the attributes within this non-left recursive grammar as, 

 E → (E) {R.in=E1.val}R {E.val=R.syn}  

E →id {R.in=id.lexval} R1 { E.val=R.syn } 

R → +E {R1.in=E.val+R.in}R1 {R.syn=R1.syn} 

R → *E { R1.in=E.val*R.in }R1 { R.syn=R1.syn } 

R → ε { R.syn=R.in} 

Second part: An annotated parse tree for 2*(3+5) is, 

  

   E.syn=16 

 

 

         Id    R1 

         

 

 2      *                 E        R.in=16 

 ε 

  (                E )            R.in=8 

 

 Id                           R 

  3   

 +                    E                  R.in=8     

 

  Id       R.in=5 

     5 
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Type Checking 

Compiler must check that the source program follows both the syntactic and semantic 

conventions of the source language. Type checking is the process of checking the data type of 

different variables.  

The design of a type checker for a language is based on information about the syntactic 

construct in the language, the notation of type, and the rules for assigning types to the language 

constructs. 

 

                           Fig: Position of Type Checker 

Type expressions: 

The type of a language construct is denoted by a type expression. 

A type expression can be: 

* A basic type 

• a primitive data type such as integer, real, char, boolean, … 

• type-error signal an error during type checking 

• void : no type 

* A type name 

• a name can be used to denote a type expression. 

* A type constructor applies to other type expressions. 

• arrays: If T is a type expression, then array(I,T) is a type expression where I 

denotes index range. Ex: array(0..99, int) 

• products: If T1 and T2 are type expressions, then their Cartesian product 

T1 X T2 is a type expression. Ex: int x int 

• pointers: If T is a type expression, then pointer(T) is a type expression. Ex: 

pointer(int) 

• functions: We may treat functions in a programming language as 

mapping from a domain type D to a range type R. So, the type of a 

function can be denoted by the type expression D→R where D is R type 

expressions. Ex: int → int represents the type of a function which takes an 

int value as parameter, and its return type is also int. 
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Type systems 

The collection of different data types and their associated rules to assign types to 

programming language constructs is known as type systems. 

* Informal type system rules, for example ―if both operands of addition are of type integer, 

then the result is of type integer‖ 

* A type checker implements type system 

Example Type Checking of Expressions 

E → id   { E.type = lookup(id.entry) } 

E → charliteral  { E.type = char } 

E → intliteral  { E.type = int } 

E → E1 + E2   { E.type = (E1.type == E2.type) ? E1.type : type_error } 

E → E1 [E2]   { E.type = (E2.type == int and E1.type == array(s,t)) ? t : type_error } 

E → E1 ↑                    { E.type = (E1.type == pointer(t)) ? t : type_error } 

S → id = E                    {S.type = (id.type == E.type) ? void : type_error} 

Note: the type of id is determined by : id.type = lookup(id.entry) 

S → if E then S1            {S.type = (E.type == boolean) ? S1.type : type_error} 

S → while E do S1         {S.type = (E.type == boolean) ? S1.type : type_error} 

S → S1 ; S2                      {S.type = (S1.type == void and S2.type == void) ? void : type_error} 

 

Static versus Dynamic type Checking 

Static checking: The type checking at the compilation time is known as static checking. 

Typically syntactical errors and misplacement of data type take place at this stage. 

– Program properties that can be checked at compile time known as static checking. 

– Typical examples of static checking are: 
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• Type checks 

• Flow-of-control checks 

• Uniqueness checks 

• Name-related checks 

Dynamic type checking: The type checking at the run time is known as static checking. 

Compiler generates verification code to enforce programming language‘s dynamic 

semantics. 

* A programming language is strongly-typed, if every program its compiler accepts 

will execute without type errors. 

* In practice, some of types checking operations are done at run-time (so, most of the 

programming languages are not strongly-typed). 

* Example: int x[100]; … x[i] most of the compilers cannot guarantee that i will be 

between 0 and 99 

 

Type Conversion and Coercion 

Type conversion 

The process of converting data from one type to another type is known as type 

conversion. Often if different parts of an expression are of different types then type 

conversion is required.  

For example, in the expression: z = x + y what is the type of z if x is integer and y is real? 

Compiler have to convert one of them to ensure that both operand of same type! 

In many language Type conversion is explicit, for example using type casts i.e. must be 

specify as inttoreal(x) 

Coercion 

The process of converting one type to another by compiler itself is known as coercion. 

Type conversion which happens implicitly is called coercion. Implicit type conversions 

are carried out by the compiler recognizing a type incompatibility and running a type 

conversion routine (for example, something like inttoreal (int)) that takes a value of the 

original type and returns a value of the required type. 

 Mathematically the hierarchy on the right is a partially order set in which each 

pair of elements has a least upper bound. For many binary operators (all the arithmetic 

ones we are considering, but not exponentiation) the two operands are converted to the 

LUB. So adding a short to a char, requires both to be converted to an int. adding a byte 
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to a float, requires the byte to be converted to a float (the float remains a float and is not 

converted).      

 

 

 

 

 

 

 

……………………………………………………………………………………………………………….. 

 

 

 

Intermediate Code Generation 

The front end translates the source program into an intermediate representation from 

which the backend generates target code. Intermediate codes are machine independent 

codes, but they are close to machine instructions. 

 

Intermediate Representations 

There are three kinds of intermediate representations: 

1. Graphical representations (e.g. Syntax tree or Dag) 

2. Postfix notation: operations on values stored on operand stack (similar to JVM byte code) 

3. Three-address code: (e.g. triples and quads) Sequence of statement of the form x = y op z 

 

Syntax tree: 

Syntax tree is a graphic representation of given source program and it is also called 

variant of parse tree. A tree in which each leaf represents an operand and each interior 

node represents an operator is called syntax tree. 

Unit -4 
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Example: Syntax tree for the expression a*(b + c)/d 

    / 

 

                                                    *                         d 

                                    

                                        a                  + 

  

                                                     b               c 

Directed acyclic graph (DAG) 

A DAG for an expression identifies the common sub expressions in the expression. It is similar 

to syntax tree, only difference is that a node in a DAG representing a common sub expression 

has more than one parent, but in syntax tree the common sub expression would be represented 

as a duplicate sub tree. 

Example: DAG for the expression a + a * (b - c) + (b - c) * d 

    + 

 

                                                    +                        * 

                                    

                                                          *                                 d                 

  

                                                     a               - 

  

  b  c 

Postfix notation 

The representation of an expression in operators followed by operands is called postfix notation 

of that expression. In general if x and y  be any two postfix expressions and OP is a binary 

operator then the result of applying OP to the x and y in postfix notation by ―x y OP‖. 
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Examples:  

1. (a+ b) * c in postfix notation is:  a b + c * 

2. a * (b + c) in postfix notation is: a b c + * 

Three Address Code: 

The address code that uses three addresses, two for operands and one for result is called three 

code. Each instruction in three address code can be described as a 4-tuple: (operator, operand1, 

operand2, result). 

A quadruple (Three address code) is of the form:  

x = y op z  

Where x, y and z are names, constants or compiler-generated temporaries and op is any 

operator. 

We use the term ―three-address code‖ because each statement usually contains three addresses 

(two for operands, one for the result). Thus the source language like x + y * z might be 

translated into a sequence  

t1 = y * z  

t2 = x + t1 where t1 and t2 are the compiler generated temporary name. 

* Assignment statements: x = y op z, op is binary 

* Assignment statements: x = op y, op is unary 

* Indexed assignments: x = y[i], x[i] = y 

* Pointer assignments: x = &y, x = *y, *x = y 

* Copy statements: x = y 

* Unconditional jumps: goto label 

* Conditional jumps: if x relop y goto label 

* Function calls: param x… call p, n return y 

Example: Three address code for expression: (B+A)*(Y-(B+A))  

     t1 = B + A 

     t2 = Y - t1 

     t3 = t1 * t2 

Example 2: Three address code for expression: 

i = 2 * n + k 

While i do 

i = i - k 
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Solution:  

t1 = 2 

t2 = t1 * n 

t3 = t2 + k 

i = t3 

L1: if i = 0 goto L2 

t4 = i - k 

i = t4 

goto L1 

L2: ……………….. 

 

Naming conventions for three address code 

* S.code →three-address code for evaluating S 

* S.begin → label to start of S or nil 

* S.after  →label to end of S or nil 

* E.code → three-address code for evaluating E 

* E.place → a name that holds the value of E 

 

 

 

 

                                  3 = t1 + t2  

 

Syntax-Directed Translation into Three-Address Code 

1. Assignment statements 

Productions Semantic rules 

S → id = E                            S.code = E.code || gen (id.place ‗=‘ E.place); S.begin = S.after = nil 

E → E1 + E2                         E.place = newtemp(); 

                                               E.code = E1.code || E2.code || gen (E.place ‗=‘ E1.place ‗+‘ E2.place) 

E → E1 * E2                          E.place = newtemp(); 

                                               E.code = E1.code || E2.code || gen (E.place ‗=‘ E1.place ‗*‘ E2.place) 

E → - E1                                E.place = newtemp(); 

Gen (E. place ‘=’ E1.place ‘+’ E2.place) 

     Code generation 

To represent three address statement 

t3=t1+t2 
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                                               E.code = E1.code || gen (E.place ‗=‘ ‗minus‘ E1.place) 

E → ( E1 )                             E.place = E1.place 

                                               E.code = E1.code 

E → id                                   E .place = id.name 

                                               E.code = null 

E → num                              E.place = newtemp(); 

                                               E.code = gen(E.place ‗=‘ num.value) 

 

2. Boolean Expressions 

Boolean expressions are used to compute logical values. They are logically used as 

conditional expressions in statements that alter the flow of control, such as if—then, if—

the—else or while---do statements. 

Control-Flow Translation of Boolean Expressions 

Production Semantic Rules 
 

 
 

 

B → B1 || B2 

B1.true = B.true 
 

B1.false = newlabel() 
 

B2.true = B.true 
 

B2.false = B.false 
 

B.code = B1.code || label(B1.false) || B2.code 
 

 
 

 

B → B1 && B2 

B1.true = newlabel() 
 

B1.false = B.false 
 

B2.true = B.true 
 

B2.false = B.false 
 

B.code = B1.code || label(B1.true) || B2.code 
 

 
 

 

B →! B1 

B1.true = B.false 
 

B1.false = B.true 
 

B.code = B1.code 
 

 
 

 

B → E1 relop E2 

B.code = E1.code || E2.code  

      || gen(if E1.addr relop.lexeme E2.addr goto B.true)  

      || gen(goto B.false) 
 

 
 

 
B → true B.code = gen(goto B.true) 

 
 

 

 
B → false B.code = gen(goto B.false) 
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3. Flow of control statements 

Control statements are ‗if—then‘, ‗if—then—else‘, and ‗while---do‘.  Control statements are 

generated by the following grammars: 

S → If exp then S1 

S → If exp then S1 else S2 

S → while exp do S1 

Production Semantic Rules 
 

  
 

 

         S → if ( B ) S1 

B.true = newlabel() 
 

B.false = S.next 
 

S1.next = S.next 
 

S.code = B.code || label(B.true) || S1.code 
 

 
 

 

         S → if ( B ) S1 else S2 

B.true = newlabel() 
 

B.false = newlabel() 
 

S1.next = S.next 
 

S2.next = S.next 
 

S.code = B.code || label(B.true) || S1.code  

      || gen(goto S.next) || label(B.false) || S2.code  

 
 

 

       S → while ( B ) S1 

begin = newlabel() 
 

B.true = newlabel() 
 

B.false = S.next 
 

S1.next = begin 
 

 
         S.code = label(begin) || B.code || label(B.true) || S1.code || gen(goto begin) 

 

 
 

 

 

 

           Fig: If--then 

 

 Fig: If—then—else                 Fig: while---do 
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Example: Generate three address code for the expression 

    if ( x < 5 || (x > 10 && x == y) ) x = 3 ; 

Solution: 

   L1: if x < 5 goto L2 

          goto L3 

    L3: if x > 10 goto L4 

              goto L1 

      L4: if x == y goto L2 

             goto L1 

      L2: x = 3 

 

4. Switch/ case statements 

 

 

 

 

 

 

 

 

Switch (E) 

{ 

        Case V1: S1 

        Case V2: S2 

        ……………… 

        ………………. 

        Case Vn : Sn 

} 

 

                                          

                       Fig: A switch / case three address translation  

Example: Convert the following switch statement into three address code: 

Switch (i + j) 

{ 

Case 1: x=y + z 

 

A switch statement is composed of two 

components: an expression E, which is used to 

select a particular case from the list of cases; and a 

case list, which is a list of n number of cases, each 

of which corresponds to one of the possible values 

of the expression E, perhaps including a default 

value.  
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Case 2: u=v + w 

Case 3: p=q * w 

Default: s=u / v 

} 

Solution: 

L1: t1=i + j 

L2: goto(L15) 

L3: t2= y+z 

L4: x=t2 

L5: goto(L19) 

L6: t3=v+w 

L7: u=t3 

L8: goto (L19) 

L9: t4=q*w 

L10: p=t4 

L11: goto (L19) 

L12: t5= u/v 

L13: s=t5 

L14: goto(L19) 

L15: if t1=1 goto(L3) 

L16: if t1=2 goto(L6) 

L17: if t1=3 goto(L9) 

L18: goto(L12) 

L19: Next 

 

Addressing array elements: 

Elements of an array can be accessed quickly if the elements are stored in a block of 

consecutive locations. If the width of each array element is w, then the ith element of 

array ‗A‘ begins in location, 

                       

Where low is the lower bound on the subscript and base is the relative address of the 

storage allocated for the array. That is base is the relative address of A[low]. 

The given expression can be partially evaluated at compile time if it is rewritten as, 

                 i * w + (base - low* w) 

               = i * w + C 

Where C=base – low*w can be evaluated when the declaration of the array is seen. 

base + (i – low)* w 
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We assume that C is saved in the symbol table entry for A, so the relative address of 

A[i] is obtained by simply adding i * w to C. 

i.e A[i]= i* w + C 

 

A[i] = base A + (i - low) * w 

        = i * w + c                    where c = base A - low * w with low = 10; w = 4 

 

Example: address of 15th element of array is calculated as below, 

Suppose base address of array is 100 and type of array is integer of size 4 bytes and 

lower bound of array is 10 then, 

A[15]=15 * 4 + (100 – 10 * 4) 

          = 60 + 60 

          = 120 

Similarly for two dimensional array, we assume that array implements by using row 

major form, the relative address of A[i1, i2] can be calculated by the formula, 

A[i1,i2]=baseA + ((i1 - low1) * n2 + i2 - low2) * w 

Where low1, low2 are the lower bounds on the values i1 and i2, n2 is the number of 

values that i2 can take. Also given expression can be rewrite as, 

             = ((i1 * n2) + i2) * w + baseA - ((low1 * n2) + low2) * w 

             = ((i1 * n2) + i2) * w + C        where C= baseA - ((low1 * n2) + low2) * w 

 

Example: Let A be a 10 X 20 array, there are 4 bytes per word, assume low1=low2=1. 

Solution: Let X=A[Y, Z] 

Now using formula for two dimensional array as, 

((i1 * n2) + i2) * w + baseA - ((low1 * n2) + low2) * w 

= ((Y * 20) + Z) * 4 + baseA - ((1 * 20) + 1) * 4 

= ((Y * 20) + Z) * 4 + baseA - ((1 * 20) + 1) * 4 

             = ((Y * 20) + Z) * 4 + baseA – 84 

We can convert the above expression in three address codes as below: 

T1= Y * 20 

T1= T1+Z 

T2=T1*4 
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T3=baseA -84 

T4=T2+ T3 

X= T4 

5. Declarative statements 

We can explain the declarative statement by using the following example, 

S → D {offset=0} 

D→ id : T {enter-to-symbol-table(id.name, T.type, offset); 

 (offset= offset+T.width)} 

T→ integer {T.type=Integer; T.width=4} 

T→ real {T.type=real; T.width=8} 

T→array [num] of T1 {T.type=array (num.val, T1.type) 

 T.width=num.val * T1.width} 

T→ ↑T1 { T.type=pointer(T1.type); T.width=4} 

* Initially offset is set to zero. As each new name is seen, that name is entered in the symbols 

table with offset equal to the current value of offset and offset is incremented by the width of 

the data object denoted by that name. 

* The procedure enter-to-symbol-table (name, type, offset) creates a symbol table entry for 

name, gives it type and relative address offset in its data area. 

* Integers have width 4 and reals have width 8. The width of an array is obtained by 

multiplying the width of each element by the number of elements in the array. 

* The width of each pointer is assumed to be 4. 

 

6. Procedure Calls 

The procedure is such an important and frequently used programming construct that is 

imperative for a compiler to generate good code for procedure calls and returns. Consider a 

grammar for a simple procedure call statement: 

S → call id (Elist ) 

Elist → Elist  

Elist → E 

When procedure call occurs, space must be allocated for the activation record of the called 

procedure. The argument of the called procedure must be evaluated and made available to the 

called procedure in a known place. The return address is usually location of the instruction that 

follows the call in the calling procedure. Finally a jump to the beginning of the code for the 

called procedure must be generated. 
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7. Back patching                               

If we decide to generate the three address code for given syntax directed definition using single 

pass only, then the main problem that occurs is the decision of addresses of the labels. ‗goto‘ 

statements refer these label statements and in one pass it becomes difficult to know the location 

of these label statements. The idea to back-patching is to leave the label unspecified and fill it 

later, when we know what it will be. 

          If we use two passes instead of one pass then in one pass we can leave these addresses 

unspecified and in second pass this incomplete information can be filled up. 

Exercise: Generate three address codes for the following statements: 

While (a<c and b<d) 

{ 

     If(a==1 ) then 

                c=c+1 

     else 

             while (a<=d)  

                          a=a+3 

} 

 

……………………………………………………………………………………………………………….. 

 

 

 Code Generation and optimization 

The process of transform intermediate code + tables into final machine (or assembly) 

code is known as code generation. The process of eliminating unnecessary and 

inefficient code such as dead code, code duplication etc from the intermediate 

representation of source code is known as code optimization. Code generation + 

Optimization are the back end of the compiler. 

 

 

 

 

 

 

Unit -4 [Chapter-2] 
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      Fig: Place of Code generator in compilation process 
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Code generator design Issues  

The code generator mainly concern with: 

 Input to the code generator 

 Target program 

 Target machine 

 Instruction selection 

 Register allocation (Storage allocation) 

 Choice of evaluation order 

 

1. Input to the Code Generator 

The input to the code generator is intermediate representation together with the 
information in the symbol table. 

 

2. The Target Program 

The output of the code generator is target code. Typically, the target code comes in 

three forms such as: absolute machine language, relocatable machine language and 

assembly language. 

The advantage of producing target code in absolute machine form is that it can be 

placed directly at the fixed memory location and then can be executed immediately. The 

benefit of such target code is that small programs can be quickly compiled. 

3. The Target Machine 

Implementing code generation requires thorough understanding of the target machine 
architecture and its instruction set. 

 

4. Instruction Selection 

Instruction selection is important to obtain efficient code. Suppose we translate three-

address code, 

     

 

 

 

   Most efficient 

 

      a=a+1 

 

MOV a,R0 

ADD #1,R0 

MOV R0,a 

ADD #1, a INC   a 
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5. Register Allocation 

Since registers are the fastest memory in the computer, the ideal solution is to store all values in 

registers. However, there are normally not nearly enough registers for this to be possible. So we 

must choose which values are in the registers at any given time. 

Actually this problem has two parts. 

1. Which values should be stored in registers? 

2. Which register should each selected value be stored in 

The reason for the second problem is that often there are register requirements, e.g., floating-

point values in floating-point registers and certain requirements for even-odd register pairs for 

multiplication/division. 

Example 

 

 

 

 

 

 

 

 

6. Evaluation Order 

When instructions are independent, their evaluation order can be changed. Sometimes 
better code results if the three address codes are reordered.  
 
 
 
 
 
 
 

 

 

 

 

MOV a, R1 

MUL b, R1 

ADD a, R1 

DIV d, R1 

MOV R1, t 

 MOV a, R0 

MOV R0, R1 

MUL b, R1 

ADD R0, R1 

DIV d, R1 

MOV R1, t 

 

t:=a*b 

t:=t+a 

t:=t/d 

 

a+b-(c+d)*e 
t1:=a+b 

t2:=c+d 

t3:=e*t2 

t4:=t1-t3 

MOV a, R0 

ADD b, R0 

MOV R0, t1 

MOV c, R1 

ADD d, R1 

MOV e, R0 

MUL R1, R0 

MOV t1, R1 

SUB R0, R1 

MOV R1, t4 

t2:=c+d 

t3:=e*t2 

t1:=a+b 

t4:=t1-t3 

Reorder 
MOV c, R0 
ADD d, R0 
MOV e, R1 
MUL R0, R1 
MOV a, R0 
ADD b, R0 
SUB R1, R0 
MOV R0, t4 
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Basic Blocks 

A basic block is a sequence of consecutive instructions in which flow of control enters by 

one entry point and exit to another point without halt or branching except at the end. 

Example: 

MOV 1, R0  

ADD n, R0 

MOV 2, R1 

MUL R0, R1 

JMP L2 

L1:      MUL 2, R0 

            SUB 1, R1 

L2:      MUL 3, R1  

           JMPNZ R1, L1 

 

 

 

Flow Graphs 

A flow graph is a graphical depiction of a sequence of instructions with control flow 

edges. A flow graph can be defined at the intermediate code level or target code level. 

The nodes of flow graphs are the basic blocks and flow-of-control to immediately follow 

node connected by directed arrow. 

Simply, if flow of control occurs in basic blocks of given sequence of instructions then 

such group of blocks is known as flow graphs. 

Example: 

MOV 1, R0  

ADD n, R0 

MOV 2, R1 

MUL R0, R1    

JMP L2 

L1:      MUL 2, R0 

            SUB 1, R1 

L2:      MUL 3, R1  

           JMPNZ R1, L1 

 

 

MOV 1, R0  

ADD n, R0 

MOV 2, R1 

MUL R0, R1 

JMP L2 

L1: MUL 2, R0 

       SUB 1, R1 

 

L2: MUL 3, R1  

       JMPNZ R1, L1 

 

MOV 1, R0  

ADD n, R0 

MOV 2, R1 

MUL R0, R1 

JMP L2 

L1: MUL 2, R0 

       SUB 1, R1 

 

L2: MUL 3, R1  

       JMPNZ R1, L1 
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Equivalence of basic blocks 

Two basic blocks are (semantically) equivalent if they compute the same set of expressions. 

 

 

 

    

 

       a= c*a 

b=0 

 

Transformations on Basic Blocks 

The process of code optimization to improve speed or reduce code size of given 

sequence of codes and convert to basic blocks by shafting and preserving the meaning 

of the code is known as transformation on basic blocks. There are mainly two types of 

code transformations: 

 Global transformations and 

 Local transformations 

Global transformations are performed across basic blocks whereas Local transformations 

are only performed on single basic blocks. A local transformation is safe if the 

transformed basic block is guaranteed to be equivalent to its original form. There are 

two classes of local transformations which are: 

1. Structure preserving transformations and 

 Common sub-expression elimination 

 Dead code elimination 

 Renaming of temporary variables 

 Interchange of two independent statements 

2. Algebraic transformations 

 

Common sub expression elimination 

Here we eliminate sub expressions that do not impact on our resultant basic block.  

 

  

 

b = 0 
t1 = a + b 
t2 = c * t1 
a = t2 

a= c*a 

b=0 

 a= c*a 

  b=0 

 

b

=

0 

 

t1 = b * c 
t2 = a - t1 
t3 = b * c 
t4 = t2 + t3 

t1 = b * c 
t2 = a - t1 
t3 = t2 + t1 
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Dead code elimination 

Here we remove unused expressions. 

 

 

 

 

 

 

Renaming Temporary variables 

Temporary variables that are dead at the end of a block can be safely renamed. 

Let we have a statement t1=a + b where t1 is a temporary variable. 

If we change this statement to t2= a + b where t2 is a new temporary variable. Then the 

value of basic block is not changed and such new equivalent statement of their original 

statement is called normal-form block. 

 

Interchange of statements 

Independent statements can be reordered without affecting the value of block to make 

its optimal use. 

  

 

 

 

Algebraic Transformations 

Change arithmetic operations to transform blocks to algebraic equivalent forms. Here 

we replace expansive expressions by cheaper expressions. 

 

  

 

 

If a==0 

Goto L1 

b=x + y 

L1:  

P= q + r 

If a==0 

Goto L1 

L1:  

P= q + r 

t1 = b + c 
t2 = a - t1 
t3 = t1 * d 
d = t2 + t3 

t1 = b + c 
t3 = t1 * d 
t2 = a - t1 
d = t2 + t3 

t1 = a - a 
t2 = b + t1 
t3 = t2 ** 2 

t1 = 0 
t2 = b  
t3 = t2 * t2 
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Next use information 
Next-use information is needed for dead-code elimination and register assignment (if 

the name in a register is no longer needed, then the register can be assigned to some 

other name). 

If i: x = … and j: y = x + z are two statements i & j, then next-use of x at i is j. 

Next-use is computed by a backward scan of a basic block and performing the 

following actions on statement 

                i: x = y op z 

Add liveness /next-use info on x, y, and z to statement i (whatever in the symbol table) 

Before going up to the previous statement (scan up): 

 Set x info to ―not live‖ and ―no next use‖ 

 Set y and z info to ―live‖ and the next uses of y and z to i 

Example: 

 

 

 

Code generator 

The code generator converts the optimized intermediate representation of a code to final code 

which is normally machined dependent.  

                d = (a-b) + (a – c)  

 To three address code 

 

             

 Final code 

 

 

 

 

 

Register Descriptors 

A register descriptor keeps track of what is currently stored in a register at a particular point in 

the code, e.g. a local variable, argument, global variable, etc. 

MOV a, R0  ―R0 contains a‖ 

t1=a –b 

t2= a – c 

t3=t1 + t2 

d= t3 

 

MOV a, R0 
SUB b, R0 
MOV a, R1 
SUB c, R1 

ADD R1, R0 

MOV d, R0 
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Address Descriptors 

An address descriptor keeps track of the location where the current value of the name can be 

found at run time, e.g. a register; stack location, memory address, etc. 

MOV a, R0 

MOV R0, R1  ―a in R0 and R1‖ 

 

Example 1: At first convert the following expression into three address code sequence 

then show the register as well as address descriptor contents. 

Statement: d = (a - b) + (a – c) + (a – c) 

Solution: The three address code sequence of above statement is: 

          t1=a –b 

         t2= a – c 

         t3=t1 + t2 

         d= t3+t2 

Statements Code generated Resister descriptor Address Descriptor 

          t1=a –b 

           

         t2= a – c 

         

 

         t3=t1 + t2 

         

          d= t3+t2 

MOV a, R0 
SUB b, R0 
 
MOV a, R1 
SUB c, R1 
 
ADD R1, R0 
 
ADD R1, R0 
MOV d, R0 

R0 contains t1 

 
 
R0 contains t1 
R1 contains t2 
 
R0 contains t3 
R1 contains t2 
 
R0 contains d 
 

t1 in R0 

 
 
t1 in R0 
t2 in R1 
 
t3 in R0 
t2 in R1 
 
d in R0 and memory 

 

Example 2: At first convert the following expression into three address code sequence 

then show the register as well as address descriptor contents. 

Statement: X = (a / b + c) – d * e 

Solution: The three address code sequence of above statement is: 

          t1=a /b 

         t2= t1 + c 

         t3=d * e 

         X= t2 – t3 
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Statements Code generated Resister descriptor Address Descriptor 

          t1=a /b 

           

         t2= t1 + c 

         

         t3=d * e 

         

          X= t2 – t3 

MOV a, R0 
DIV b, R0 
 
ADD c, R0 
 
MOV d, R1 
MUL e, R1 
 
SUB R1, R0 
MOV X, R0 

R0 contains t1 

 
 
R0 contains t2 
 
R0 contains t2 
R1 contains t3 
 
R0 contains X 
R1 contains t3 

t1 in R0 

 
 
t2 in R0 
 
t2 in R0 
t3 in R1 
 
X is in R0 and in 
memory 

 

 

Code optimization 

 

 

 

Ans: The various optimization approaches are listed below: 

* Redundant instruction elimination 

* Flow of control optimization 

* Dead code elimination 

* Common sub expression elimination 

* Algebraic simplification 

* Use of machine idioms 

* Reduction in strength 

* Loop optimization 

* Loop invariant optimization 

 

Redundant instruction elimination 

Consider an instruction sequence 

I. MOV R0, a 

II. MOV a, Ro 

Here, we can delete instruction (II) only when both of them are in the same block. The 

first instruction can also be deleted if live (a) = false. 

 

 

[Q]. Explain various optimization approaches (Peephole optimizations) with 

suitable example for each of the approach. 
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Flow of control optimization 

 

  

 

 

 

 

 

 

 

 

Use of machine idioms 

If the addressing mode INC is defined then we can replace given expression into their 

equivalent efficient form as below, 

  

            Total cost=3               Total cost=2 

Reduction in strength 

Replace expensive arithmetic operations with corresponding cheaper expressions. 

 

 

 

 

Loop optimization 

If a complex expression is used as condition to the loop then such a expression can be reduced 

into smaller sub expressions outside the loop and only their final result used to the looping as a 

condition check. Such an approach is called loop optimization. 

 

       

 

If a==0 

Goto L1 

b=x + y 

L1:  

Go to L2 

L2:  

P= q + r 

……… 

L2:  

P= q + r 

……… 

If a==0 

Goto L1 

……………… 

     a= a+1 

………………

… 

……………… 

       INC a 

………………

… 

……………… 

     a= x^2 

     b= y/8 

………….. 

……………… 

      a= x * x 

      b= y>>3 

………………

… 

While (i<=limit* 2-10) 
t1=limit*2 

t2=t1-10 

While (i<=t2) 
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Loop invariant optimization 

A code fragment inside the loop is said to be loop invariant if its computation does not 

depends on the loop. Such fragment can be removed from the loop and can be 

computed before the loop execution as below, 

Eg:  

  

 

 

 

 

 

 

 Loop invariant 

Example 1: On the following piece of code, 

 

 

 

 

 

 

 

Identify different kinds of optimizations possible and describe them. Rewrite the code after 

making optimizations. 

Solution:  

 

 

 

 

 

temp =10; 

i=0; 

while (i!=temp) 

{ 

    i++; 

    j=temp*2; 

} 

 

temp =10; 

i=0; 

j=temp*2; 

while (i!=temp) 

{ 

    i++; 

} 

 

max = 4099; 

x=max*10; 

while (i!=x*5) 

{ 

    b[i]=i * find(x); 

     c=max; 

     while (x<0) 

                   max - -; 

    d=x * I; 

} 

 

max = 4099; 

x=max*10; 

while (i!=x*5)               Loop optimization 

{ 

    b[i]=i * find(x); Redundant expression 

     c=max; 

     while (x<0) 

                   max - -;              dead code 

    d=x * i; 

} 
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Generating code from DAGs                               
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